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The assumption of Lorentz invariance is one of the founding principles of modern physics and
violation of that would have deep consequences to our understanding of the universe. Potential
signatures of such a violation could range from energy dependent dispersion introduced into a
light curve to a change in the photon-photon pair production threshold that changes the expected
opacity of the universe. Astronomical sources of Very High Energy (VHE) photons can be used as
test beams to probe fundamental physics phenomena, however, such effects would likely be small
and need to be disentangled from intrinsic source physics processes. The Cherenkov Telescope
Array (CTA) will be the next generation ground based observatory of VHE photons. It will
have improved flux sensitivity, a lower energy threshold (tens of GeV), broader energy coverage
(nearly 5 decades) and improved energy resolution (better than 10% over much of the energy
range) compared to current facilities in addition to excellent time resolution for short timescale
and rapidly varying phenomena. The expected sensitivity of this facility leads to us to examine in
this contribution the kinds of limits to Lorentz Invariance Violation (LIV) that we could expect to
obtain on VHE observations of Active Galactic Nuclei (AGN), Gamma Ray Bursts (GRBs) and
pulsars with CTA. With a statistical sample and wide variety of sources CTA has the potential to
set model independent limits.
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1. Introduction

Lorentz invariance (LI) is one of the founding principles of the Special Relativity theory of
Modern Physics. However it has long been understood that attempting to unify General Relativity
(GR) with that other success of Modern Physics, Quantum Mechanics (QM), can in turn lead to
deviations from Lorentz symmetry when describing spacetime structure in terms of finite quanta
rather than as a continuous lightcone in Minkowski spacetime ([1, 2] and references therein). If
LI is only an approximate symmetry of local spacetime then it is likely modified at some scale
outside our realm of experience, the Planck scale (EQG ≈ EPl ' 1019 GeV) being a natural one to
hypothesise.

Whilst many Quantum Gravity (QG) models have been posited, because the scale of Lorentz
invariance violation (LIV) is likely to be so far beyond anything that is feasibly accessible in the
lab. any consequent effect on the observable world would be so correspondingly small that it can be
treated perturbatively and approximated by a dispersion measure that is a simple Taylor expansion

c2 p2 = E2
γ ∑

α

±ξα(Eα
γ /Eα

QG) (1.1)

where c is the speed of light, p the momentum, Eγ the energy and ξα is the correction factor, with
the leading linear (α = 1) and quadratic (α = 2) terms being those of the most interest. In the linear
case, it has been shown that CPT can be violated in effective field theory [3]; however, if CPT is
preserved and LI violated it is the quadratic term that would dominate. A positive correction term
represents a subluminal change and a negative a superluminal one. This results in there being many
QG models that lead to a vacuum velocity of light that is energy dependent.

The most energetic photons recorded are from astrophysical sources and have energies of ∼
tens of TeV; for Eγ ∼ 1 TeV the correction to the speed of light due to Planck scale linear quan-
tum gravity would be of order 10−15c. The infinitesimal magnitude of the signature at accessible
energy ranges means that these searches require extremely sensitive measurements. Usefully, the
minuscule corrections are cumulative and so can become a measurable dispersion when photons
travel astronomical distances; although the magnitude of the time delays expected are still only
δ t ≤ 10 s/TeV/Gpc for a linear term Planck scale QG.

For measuring dispersion due to LIV there are three criteria that an ideal probe should meet:

• emit very high energy photons,

• be very distant,

• exhibit variability with good statistics

Unfortunately some of these are mutually exclusive, for example very high energy photons will
be attenuated by γ + γ → e++ e− pair production on the diffuse extragalactic background light,
thereby limiting the distance to which these sources will have a detectable, time resolved signal.
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2. Cherenkov Telescope Array

The Cherenkov Telescope Array (CTA)1 [4] will be the next generation imaging atmospheric
Cherenkov telescope (IACT) facility, providing the community with an open-access observatory
for the observation of gamma rays with energies from a few tens of GeV to hundreds of TeV with
unprecedented sensitivity and angular and energy resolution. To achieve the large dynamic range
in energy coverage the array will be comprised of multiple telescope sizes: 23 m diameter large
size telescopes provide a low energy threshold and fast slewing for objects like gamma ray bursts
(GRBs); 12 m diameter medium size telescopes provide an order of magnitude improvement in
flux sensitivity ideal for surveys in the 0.1 to 1 TeV region; and 4 m diameter small sized telescopes
(SSTs) will examine the highest energy region (E ≥ 10 TeV) ideal for examining cut-offs to the
spectrum. Whole sky coverage will be achieved by operating at sites in both hemispheres. Figure 1
shows the anticipated performance of CTA in comparison to current facilities.

Figure 1: Integral Sensitivity of CTA in comparison to currently operating facilities.

3. Time Of Flight Measurements

To search for a difference in the arrival times of high energy photons as a signature of quantum
gravity effects was first suggested for gamma-rays bursts [5], but has also enjoyed varying levels of
success in the light curves of active galactic nuclei and pulsars, too. In order to disentangle intrinsic
source effects, e.g. due to particle acceleration, from an externally induced dispersion will require
measurements from a variety of sources and source types.

3.1 Gamma ray bursts

Gamma ray bursts (GRBs) show the fastest variability, where short duration GRBs have a
duration of < 2 s, and have the furthest distance of known γ-ray sources (out to at least z∼ 1), but
not the highest energy photons from known astrophysical sources. Observed by the Fermi-LAT
satellite [6], GRB 090510 has already provided some of the most constraining limits yet, with a
limit above the Planck scale for a linear term LIV induced dispersion [7, 8] using photons above

1www.cta-observatory.org
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10 GeV. CTA will have an effective collection area that is ≥ 104 that of Fermi, so if a similar GRB
is detected the photon statistics at the highest energies would increase significantly making for
even more robust and constraining limits. The relatively small field of view of an IACT make it
challenging to catch GRBs serendipitously at the onset phase and so a divergent pointing mode in
survey observations would be the most likely observing strategy to successfully catch a GRB at its
most relevant light curve stage [9]. GRBs also suffer in that they are unpredictable in location and
distance, so it is challenging to build up statistics with them as individual sources with a pointed
instrument.

3.2 Active Galactic Nuclei

The jets from active galactic nuclei (AGN) make for even more energetic sources of photons
than GRBs, with the advantage that they also have known positions that enable them to be mon-
itored for activity, but at the expense of longer (∼ minute) scale variability features in the light
curve. Current LIV limits are just below the Planck scale on the linear term with current generation
instruments observations of AGN flares [10, 11, 12]. To further constrain the limits will require
the CTA to detect significant numbers of higher energy photons and/or faster time variability from
AGN flare observations. Following the method of [13] shows that a minimum of 10 photons are
required in the high energy light curve component of a flare that is no longer in duration than 3
times the expected level of dispersion to perform a test; and to improve on current limits would
require a ten-fold increase in the energy of photons tested, i.e. an enhanced collection area for
photons above 10 TeV. Taking the highly active flaring states and extrapolating the spectra for the
AGN Mrk 421 [14], PKS 2155-304 [15] and 3C 279 [16] we plot in figure 2 the number of expected
photons above a given energy based on the CTA expected performance. For PKS 2155-304 it ap-
pears very achievable to obtain at least 10 photons above 10 TeV in a 120 s flare, which is within
a factor 2 of the currently measured most extreme flaring activity and also close within reach of
Mrk 421 in 30 s which is regularly seen in a high flaring state (having exceeded 10 Crab on at least
3 occassions in 14 years of monitoring [17]). So if these extreme conditions were repeated, or ex-
ceeded, for CTA observations the prospects for improving the current LIV limits seem to be good
to match GRB limits on the linear term and likely exceed them on the quadratic term.

Even if the AGN light curve does not have sufficiently rapid features to determine dispersion
for any single flaring episode, a LIV induced dispersion will mean that higher energy photons will
always arrive shifted with respect to lower energy ones in the light curve. The accumulation of long
term monitoring data means that we can still potentially determine time delays at high confidence,
e.g. through the use of cross-power spectral analysis methods [18]. The underlying rapid varying
features monitored over long periods serving to further increase the chance of detection. This will
be the first time that routine AGN observations, i.e. not on exceptional flux levels, will provide us
with such LIV constraints.

3.3 Pulsars

When it comes to testing the quadratic term for LIV, having a very high energy component
compensates for a lack of distance. Pulsars represent a very fast varying, relatively well understood
source population with very different intrinsic source physics processes to GRBs and AGN. The
Crab pulsar has a pulsed VHE component to its spectrum up to hundreds of GeV and little evidence
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Figure 2: The number of photons CTA expects to see above a given energy in a given time extrapolating
for the highest flux states for the AGN Mrk 421 (blue line) in 30 s; PKS 2155-304 (black line) in 120 s; and
3C 279 (red line) in 630 s.

of a cut-off (within event statistics) [19]. Whilst the LIV limits from current generation instruments
are presently inferior to those from AGN and GRBs [20], CTA observations for 50 hours with a
cut-off to the spectrum that is > 1 TeV would result in limits that are competitive with the current
generation limits from the AGN PKS 2155-304. An inverse Compton component to the pulsar
spectrum could be present that would generate VHE emission [21, 22]. Assuming a millisecond
pulsar observed above 1 TeV with CTA if the pulsed flux is 10% the pulsar flux at 100 GeV then in
100 hours of observations limits at the Planck energy scale in the linear term and ' 1011 GeV level
in the quadratic term are potentially achievable. This opens up the possibility of pulsars providing
comparable limits to AGN/GRBs. As a pulsar has a very well measured light curve profile it also
makes for an interesting source to test for any light curve broadening that might occur from a
polarisation dependent superluminal correction (see e.g. [23, 24]), which would give this source
class a distinct advantage over AGN/GRBs.

4. Gamma Ray Horizon Measurements

If LIV modifies the dispersion relation for γ rays it could also affect the kinematics in the pair
production process through the addition of an extra correction

E2 = p2c2 +m2c4±E2
(

E
EQG

)α

changing the cross-section for interaction that attenuates the VHE signal as it travels through the
diffuse extragalactic background radiation filling the universe. This would then allow VHE pho-
tons, potentially up to hundreds of TeV, to be detected that would not normally be expected in deep
observations of suitably hard spectrum distant AGN/GRBs [25, 26, 27] that are used to constrain
the level of extragalactic background light (EBL) in the hard to directly measure ultraviolet-infrared
region or on the cosmic microwave backround (CMB). Any photons detected at or above the ener-
gies where attenuation is expected on the CMB would be an unambiguous signal for new physics
since the diffuse emission spectrum is extremely well known there and the horizon extremely small,
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due to the CMB being 4 orders of magnitude larger than the EBL. As the energy region to target
is for photons above 10 TeV, it is important that the SST component of the array be included in
deep observations of AGN. Appropriate source selection is paramount, ideally an object with any
cut-off to the intrinsic source spectrum to be higher than 10 TeV, meaning that sources with a harder
spectrum, like AP Lib, that may be relatively faint below 1 TeV can be more suitable than bright
ones, such as PKS 2155-304. Table 1 shows if we take a generic source at the ' 2% Crab level of
emission with a spectrum of 1.12×10−12E−2.72 exp(−E/10TeV) photons cm−2 s−1 that very com-
petitive limits can be made, particularly on the quadratic term. Interestingly, the region in redshift
where the best limits can be found is slightly further away for the quadratic term than the linear
one, which at first seems slightly counter-intuitive given that in the time-of-flight measurements
the distance requirement is lessened greatly by the square in the energy term.

redshift linear quadratic
z [GeV] [GeV]

0.05 2.03×1018 1.61×1011

0.10 1.43×1018 2.21×1011

0.15 1.24×1018 1.23×1011

Table 1: 3σ limits on the QG energy scale for a source at different redshifts and intrinsic spectrum of 2%
Crab flux spectral index of -2.7 and an exponential cut-off at 10 TeV.

5. Summary

CTA will be able to perform tests for LIV both in terms of time-of-flight tests that look for
an energy dependent dispersion and for changes to the pair-production interaction threshold that
would shift the gamma-ray horizon. With an appropriate observing strategy and source selection,
the potential is there to place limits on a linear correction term at the Planck scale and > 1011 GeV
on a quadratic term. By having sensitivity to test on a wide variety of sources as a function of
redshift, on different source categories and different physical processes enables CTA to perform
these tests in a model independent fashion for the first time in VHE observations.

We gratefully acknowledge support from the agencies and organizations listed under Funding
Agencies at this website: http://www.cta-observatory.org/.
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