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The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes have observed the
Galactic Center during the past four years. Due to its location in the northern hemisphere, MAGIC
observes the GC at large zenith angles (58-70 deg), resulting in a higher energy threshold, but an
enhanced effective collection area at multi-TeV energies.
The primary goal of this campaign was searching for variability in the very high energy gamma
ray regime during the closest approach of the G2 gas cloud, which orbits the GC on a highly
eccentric trajectory with a pericentre distance of only a few thousand Schwarzschild radii. These
observations, apart from searching for variability, allowed us to perform morphological and spec-
tral studies of the region, based on a large data set of about 80h.
No variability was detected in the 2013 and the 2014 data set. The diffuse TeV emission around
GC could be imaged with great sensitivity, which led to the detection of TeV gamma rays from a
region 0.2 deg away from SgrA* that is spatially coincident to the extended radio structure called
Arc.
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1. Introduction

1.1 The Galactic Center Region

The central region of our galaxy is very densely populated with a large variety of astrophys-
ical objects, many of which may be sites of extreme particle acceleration and hence gamma-ray
emission. The most particular candidate for such an accelerator is the super massive black hole
(SMBH), which is identified with the point-like radio source SgrA* and known to be the dynami-
cal center of stellar motion in the central region of our galaxy [1, 2, 3, 4].

The Galactic center (GC) has also been extensively observed in the high energy (HE; &100
MeV) regime with the EGRET and Fermi-LAT instruments and in the very high energy (VHE,
&100 GeV) regime with Imaging Atmospheric Cherenkov Telescopes [5, 6, 7, 8, 9]. More recent
observations have shown that part of the TeV emission comes from a point-like object that coincides
with the location of SgrA* within angular resolution and revealed that the area hosts an extended
emission region, the GC ridge [10, 11, 12].

1.2 The periastron passage of the G2 Gas Cloud

The G2 gas cloud was discovered in VLT data and found to be on a highly eccentric orbit
towards the central black hole (BH) of our galaxy [13]. This object with an estimated mass of
about three times the Earth’s was predicted to experience its periastron passage around mid 2013
at a distance of about 2200 Schwarzschild radii [14].

It is still subject to discussion, weather G2 is actually a gas cloud or rather a star or a star
with stellar wind [15, 16]. Predictions vary from no effect at all to strong flaring activity of SgrA*
[17, 18]. Some suggest that G2 may interact with stellar mass black holes that are expected to exist
in the vicinity of SgrA* [19].

Regardless of the poor knowledge of the exact properties of G2, given the rarity of such an
event, instruments in many wavebands started monitoring campaigns of SgrA*. So far no detec-
tions of abnormal activity have been reported [20, 21, 22]. There is however a hint for increased
flaring activity in X-ray during 2013/14 [23].

1.3 The MAGIC Telescopes

The MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes are two 17 m di-
ameter Imaging Atmospheric Cherenkov Telescopes (IACT). They are located at a height of 2200
m a.s.l. in the Roque de los Muchachos Observatory on the Canary Island of La Palma, Spain
(28◦N, 18◦W). The telescopes are used for observations of Cherenkov light flashes produced by
superluminal charged particles in Extensive Air Showers (EAS) initiated by gamma-ray photons
with energies &50 GeV.

Both telescopes are nominally operated together in the so-called stereoscopic mode, in which
only events seen simultaneously in both telescopes are triggered and analyzed [24]. At energies
around a few hundred GeV, for low Zenith distance (Zd) observations, the energy resolution is
approximately 16% with a systematic bias on the order of 15% [25], while the angular resolution
of the system is .0.07◦. The sensitivity above 220 GeV is (0.66±0.03)% Crab Units (CU) for 50
hours of observations at low zenith angles.
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1.4 The MAGIC GC Observation Campaign

The GC region observing campaign began in April 2012, and was intended as a long-term
monitoring program spanning over several years. Since then around 80 hours of good quality data
have been recorded.

When observed from the MAGIC site, the GC culminates at 57.78◦ Zd. This has strong impli-
cations for the observation conditions and the available time slots for observations. When observing
at such large inclination (58◦-70◦) the Cherenkov light pool at ground level produced by EAS is
increased by a factor 4 to 10 in area. This implies a higher energy threshold, but also leads to
an increased collection area by around this factor. Such observations with the MAGIC telescopes
provide excellent sensitivity for energies & 1 TeV. The time window for observing the GC with
MAGIC when setting the Zd limit to 70◦ is approximately from mid-February until the end of
September.

2. Data Analysis and Results

2.1 Data selection

Given that the GC was observed at such large Zd, the impact of the atmosphere on the data
quality is increased compared to low Zd observations. This accounts for the effect of decreased
transmission, as well as the increase of scattered light from the moon or terrestrial sources. The
measurement of flux above a certain energy threshold is most sensitive to changes of atmospheric
transmission. Therefore two different data quality selection classes were introduced: one for spec-
tral and morphological studies and one with even stricter selection criteria for producing the light
curve.

2.2 Data Analysis

After applying quality cuts the data could be analyzed with the standard MAGIC software tools
starting from single telescope image parameter files, that are then combined through the calculation
of stereo parameters.

Random Forests (RFs) based on simulated gamma rays are used for event classification, di-
rection reconstruction and gamma-hadron separation. All events classified as gamma rays are used
for the extraction of signal and background from suitable regions. SgrA* was observed in the so-
called Wobble mode, where the source is observed in symmetric positions in the camera plane, all
with an offset of 0.4◦ from the camera center. For the production of the spectrum and light curve,
symmetric regions that are located off the Galactic plane were used for the background estimation.
For the production of sky maps the blind map method was used, which compares the camera posi-
tions exposed to different regions of the sky for finding the best background estimate for the given
camera position.

2.3 Variability Search

For the production of the light curve only data that fulfilled selection criteria for very clear
skies was used, which is currently available only for the 2013 and 2014 data. The total amount
of data in this sample corresponds to an observation time of about 45h. The flux from a region of
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Figure 1: Light curve of integral flux F above 2 TeV from 0.14◦ radius around SgrA* with 50d binning for
2013 and 2014 data
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Figure 2: SED of the GC point-source extracted from a 0.14◦ radius region around SgrA*, compared to pre-
vious measurements by H.E.S.S. and VERITAS. MAGIC data is shown as unfolded spectrum (data points)
and power-law function with cut-off from froward folding (shaded region).

radius 0.14◦ around the location of SgrA* (RA 266.4168◦, Dec -29.0078◦) was measured in time
bins of 50d length. Figure 1 shows the light curve of the integral flux F above 2 TeV for 2013 and
2014 data. No significant deviation from a constant flux has been found.

2.4 Spectrum of the SgrA* point source

The same extraction region that was used for the light curve was also used for the SED, but
using the data set with slightly relaxed data selection criteria and for the years 2012, 2013, 2014
and 2015 (in total ∼80 h). Figure 2 shows the SED obtained from the new observations by MAGIC
compared to previous measurements by H.E.S.S. and VERITAS [10, 12]. The best fitting parame-
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Figure 3: Sky maps based on 80h data set for energy range of E & 1 TeV: relative flux map with significance
contours starting from a minimum of 5σ local significance (a), residual map after subtracting the fitted SgrA*
point source (b), after subtracting G0.9+0.1 in addition (c), residual map after subtracting also the emission
region close to the arc with significance contours starting at 3σ (d).

ters when assuming a power-law function with exponential cut-off

dF
dE

= f0

(
E

TeV1

)α

exp− E
Ecut

. (2.1)

and using the forward folding method are α = 2.04±0.12 and Ecut = 13.5±5.9TeV.

2.5 Morphology Study

The sky maps that are discussed in the following are based on the same 80h data set that was
used for the SED and use an energy range of E & 1 TeV. Apart from the SgrA* point-source, like in
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previous measurements by H.E.S.S. and VERITAS [26, 12], the MAGIC measurements also show
extended emission coming from the region along the Galactic plane. This becomes more obvious
when fitting the emission within 0.12◦ from SgrA* source with a 2D Gaussian and subtracting
it from the relative flux map (see figure 3a). The residual sky map shows significant gamma-ray
excess from the location of the supernova remnant G0.9+0.1 as well as from a region ∼ 0.2◦ left
from SgrA* (figure 3b).

G0.9+0.1 has been previously detected in VHE gamma rays by the H.E.S.S telescope [27] and
has been identified as VHE counterpart of the PWN. The second region with strong gamma-ray
excess, which has not been reported in the literature to date, is seen with a local significance of
more than 7σ when subtracting the contribution from SgrA* as specified above (see figure 3b)1.
This location coincides with the southern part of the large scale radio structure called “the Arc” and
hence it may be physically associated with it [28]. Other possible counterparts are the super shell
G0.11-0.11, also possibly interacting with the Arc [29], or the pulsar wind nebula (PWN) G0.13-
0.11 [30]. It is also possible that the TeV emission is produced by the interaction of cosmic rays
(e.g. accelerated in a flaring period of SgrA* in the recent past) with the dense molecular clouds in
this region [31].

After fitting and removing also those two sources in a similar manner as described above, the
residual flux distributes along the Galactic plane (extending from top left to bottom right of the sky
map), with evidence for enhanced emission from the dense molecular clouds SgrB2 and SgrC as
well as from the region of SgrD (figure 3d).

3. Conclusions

The Galactic Center has been re-observed by MAGIC during 2012-15, accumulating approx-
imately 80 h of good quality data. These observations were carried out in order to probe for flux
variability of the SgrA* TeV source during the periastron passage of the G2 gas cloud.

No variability has been detected during the years 2013/14. Apart from probing for variabil-
ity, the data could also be used for a precise spectral and morphological analysis of the SgrA*
point-source and its surroundings. The flux and spectral shape has been found in good agreement
with measurements by other instruments. In addition, we found a significant VHE gamma-ray ex-
cess from a region 0.2 deg away from SgrA* and spatially coinciding with the Arc radio source.
The significance and morphology of this potential new source will be further investigated under
different assumptions for the diffuse VHE gamma-ray backgrounds in that region of the sky.
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