
P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

Parallel waveform extraction algorithms for the
Cherenkov Telescope Array Real-Time Analysis

Andrea Zoli∗,a, Andrea Bulgarellia, Adriano De Rosaa, Alessio Aboudana, Valentina
Fiorettia, Giovanni De Cesarea, Ramin Marxb, for the CTA Consortium†

aINAF/IASF Bologna, Bologna, Italy
bMax-Planck-Institut für Kernphysik, Heidelberg, Germany
E-mail: zoli@iasfbo.inaf.it

The Cherenkov Telescope Array (CTA) is the next generation observatory for the study of very
high-energy gamma rays from about 20 GeV up to 300 TeV. Thanks to the large effective area
and field of view, the CTA observatory will be characterized by an unprecedented sensitivity to
transient flaring gamma-ray phenomena compared to both current ground (e.g. MAGIC, VERI-
TAS, H.E.S.S.) and space (e.g. Fermi) gamma-ray telescopes. In order to trigger the astrophysics
community for follow-up observations, or being able to quickly respond to external science alerts,
a fast analysis pipeline is crucial. This will be accomplished by means of a Real-Time Analysis
(RTA) pipeline, a fast and automated science alert trigger system, becoming a key system of the
CTA observatory. Among the CTA design key requirements to the RTA system, the most chal-
lenging is the generation of alerts within 30 seconds from the last acquired event, while obtaining
a flux sensitivity not worse than the one of the final analysis by more than a factor of 3. A dedi-
cated software and hardware architecture for the RTA pipeline must be designed and tested. We
present comparison of OpenCL solutions using different kind of devices like CPUs, Graphical
Processing Unit (GPU) and Field Programmable Array (FPGA) cards for the Real-Time data
reduction of the Cherenkov Telescope Array (CTA) triggered data.

The 34th International Cosmic Ray Conference,
30 July-6 August, 2015
The Hague, The Netherlands

∗Speaker.
†Full consortium author list at http://cta-observatory.org

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:zoli@iasfbo.inaf.it

P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

Parallel waveform extraction algorithms for CTA Andrea Zoli

1. Introduction

The Cherenkov Telescope Array (CTA) [1] will be the biggest ground-based very-high energy
(VHE) γ-ray observatory, with a factor of 10 improvement in sensitivity compared to both current
ground (e.g. MAGIC [2], VERITAS [3], HESS [4]) and space (e.g. Fermi [5]) gamma-ray tele-
scopes considering in lower energy range. To achieve this sensitivity three types of telescopes will
be organized in a grid. In order to cover the entire sky, the observatory will be divided into two
array of telescopes across two sites, one in each hemisphere.

Both arrays will be able to observe transient phenomena like Gamma-Ray Bursts (GRBs) and
gamma-ray flares. To capture these phenomena during their evolution and for effective commu-
nication to the astrophysical community, speed is crucial and requires a system with a reliable
automated trigger that can issue alerts immediately upon detection. This task will be performed
by the level-A analysis, also known as Real-Time Analysis (RTA), system of CTA [6] which is
capable of triggering scientific alerts within 30 seconds from the beginning of an event. The RTA
sensitivity will be not worse than the final one by more than a factor of 3. The RTA alerts will be
used, also, to repoint part or the whole array to observe events that cannot be otherwise possible.

RTA is a key component of the CTA on-site analysis infrastructure, and a huge amount of
computing power for the elaboration is forseen. This work benchmarks both performances and
performances per Watt, of different High Performance Computing (HPC) solutions for the RTA
waveform extraction, considering both the temporal constraints and the current CTA prototyping
data flow.

2. Waveform extraction algorithm

The waveform extraction algorithm is the first step of the RTA pipeline. We used a six-sample
sliding window method, one for each waveform, to find the window with the maximum sum of
samples and its related time [7]. The extracted t time associated to the signal window is computed
by the mean of the sample time values, weighted by the sample value, using the following equation:

t =
∑

i0+ws−1
i=i0

siti

∑
i0+ws−1
i=i0

si

being i the sample index within the selected window, ws the window size, si the sample value and
ti the i-sample signal time.

The algorithm input is the camera data generated from the CTA PROD2 simulations [8] and
saved using the Streaming Data Format (SDF) [9]. In order to simulate correctly an RTA pipeline
and access the camera raw data we used the PacketLib C++ library, preloading the raw camera
packets into a circular buffer. Each raw camera packet contains 1141 or 1855 pixels, depending
on the camera type, with a fixed number of samples of 40 or 30 for each waveform respectively.
Considering the expected triggered camera event rate of 41 kHz, and a mean packet size of 100 kB,
samples of two bytes, the waveform extraction algorithm must process 4.1 kB/s of events.

The sequential algorithm version extracts the waveforms per-event using a window of M and
an input size of N =WS, being W the number of pixels and S the number of samples of a triggered
camera event. The final complexity without optimizations it is O(NM). We avoided the window

2

P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

Parallel waveform extraction algorithms for CTA Andrea Zoli

loop, and so the M complexity, reusing the computed sums of the previous windows. The final
complexity of our best sequential algorithm is then O(N). We optimized also the case when N is
little, splitting the algorithm into two parts: the first computes the sums and their relative times
while the second one finds the maximum sum using a reduction, with a lower complexity.

To run the algorithm on multiple threads we used OpenMP [10]. The complexity of the parallel
algorithm is O(N/P) where P is the number of threads. In our scenario, the parallel access from
multiple threads to the same buffer, represent a critical section. Notice that in a real case the
performances and the scalability of the algorithm are in general worse than the theorical case.

A GPU or an FPGA solution can perform better, so, we tested the algorithm using OpenCL
[11]. OpenCL is an open standard framework for writing programs that execute across heteroge-
neous platforms, providing parallel computing using task-based and data-based parallelism. We
implemented two different kernels (C99-like methods) parallelizing on the pixels and on the slices
respectively. To reduce the number of OpenCL calls and use correctly the accelerators, we com-
bined multiple events into groups. Testing different group sizes we have found a good trade-off
between the buffer size and minumum performances required of 100 events per group regarding
the GPU and 10k events for the FPGA. This method emulates the real buffering of the data into
different queues depending on the camera type. For the benchmarks we counted the event grouping
latency due to the copy. We have performed some optimization, like the coalescent access to the
global device memory. For the FPGA we implemented a single work-item kernel unrolling the
windows loops, with a resulting board usage of 80%.

Each test was run over the input circular buffer for 100K triggered camera events, consider-
ing the entire event loop timing, including the parallel access to the input buffer, the waveform
extraction and the data transfer between cpu and accelerators (only using OpenCL). The used test
machine has the following tested devices: an Intel Xeon E5-2697 v3 CPU with 132 GB of RAM
DDR3, an Nvidia Tesla K40 GPU and the Altera Stratix V GT FPGA. The machine runs CentOS
6.5 with gcc 4.8.2. The OpenCL device drivers versions installed are OpenCL 1.2 (Build 57), pro-
vided by the Intel OpenCL Runtime 15, OpenCL 1.1 CUDA 6.5.48 provided by CUDA 6.5.14 and
OpenCL 1.0 Altera SDK for OpenCL, Version 14.1.1 provided by the Altera SDK for OpenCL
[12]. The sequential and the OpenMP versions are optimized using -O2 compiler optimization
options.

3

P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

Parallel waveform extraction algorithms for CTA Andrea Zoli

3. Results and analysis

Algorithm Device Nominal Power Watt Performance Performance per watt
watt watt kevents/s (GB/s) kevents/s/watt

Sequential CPU 147 47 6.66 (0.71) 0.141
OpenMP 8 cores CPU 147 137 46.80 (4.96) 0.341
OpenMP 56 cores CPU 147 291 164.40 (17.43) 0.861
OpenCL CPU 147 248 25.43 (2.70) 0.102

GPU 163 95 36.97 (3.91) 0.389
FPGA 164 21 10.93 (0.91) 0.520

Table 1: The collected results for the sequential algorithm on a single CPU core and for the parallel al-
gorithms developed with OpenMP and OpenCL. The nominal power is the power consumption of the test
machine at nominal state. The watt column is the power consumption difference from nominal state while
running the tests. The target performances are of 40 kevents/s. Higher performances per watt (power effi-
ciency) are better.

The results of our tests are reported in Table 1. We have obtained optimal results in terms of
performances using OpenMP using all the 56 cores of the Intel CPU. Regarding the OpenCL solu-
tions, more than half of the time is spent on data transfer to devices, plus an additional time is spent
on the host to group the events. The OpenCL kernels execution is memory-bound, with most of the
time spent loading and storing data on the device memory. Considering these problems, we can say
that GPUs performed quite well, almost reaching the goal of 4 GB/s without much optimization.
On the contrary, the given FPGA OpenCL solution gives currently poor performances. The reasons
are mainly the kernel design and the bus bottleneck. The current board design is based on a single
work-item kernel, exploiting the pipeline parallelism obtained from the window loop unrolling.
Better results can be obtained using the “multiple compute units" optimization. With this kernel
and using the Altera channels for communication between kernels we can theorically double the
performances. Another way to greatly improve the performances can be the use of a double buffer
to parallelize the data transfert to the device and the kernel execution. This improvement applies
also to the GPU case. Regarding the other problem of the bus access, instead, we have used the
Altera SDK for OpenCL with the Nallatech OpenCL board Intellectual Property (IP). By now, it is
not available a PCI-Express v3 bus IP, but only the PCI-Express v2 IP one. So, even if the FPGA is
physically attached to a PCI-Express v3 bus, the memory bandwidth reaches only 2.5GB/s on both
directions (tested using the provided device memcopy test). This bottleneck should be overcomed
with the future IP releases. Using the PCI-Express v3 IP the data transfer should be enough to
reach the performance goal. It should be even better using the CAPI bus, a a dedicated solution
developed by IBM to increase the performances of the PCI-E buses 1.

In terms of performances per watt we reached the best results using the FPGA solution. Given
a single watt, the FPGA performs 34% better then 8 CPU cores, which are the required to sustain
the target event rate of 41 kevents/s. The GPU seems to be quite efficient too, but we its nominal
consumption has to be subtracted, so the real consumption is greater then the reported one.

1http://www-304.ibm.com/webapp/set2/sas/f/capi/home.html

4

http://www-304.ibm.com/webapp/set2/sas/f/capi/home.html

P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

Parallel waveform extraction algorithms for CTA Andrea Zoli

4. Summary and conclusion

The heterogenous computing is a key factor to maximize the performances of the RTA pipeline.
More importantly, each algorithm can be tailored to run over different kind of devices, obtaining
a solution that is also energy efficient. This is important considering that the RTA pipeline will
run on-site, but cutting the maintenance costs could be useful even for the CTA software running
off-site.

With this work we tested the waveform extraction algorithm using different kind of device and
methods. We reached optimal results with the CPU in terms of performances, good ones with GPU
and further tests for the FPGA are required. Regarding the energy efficiency, instead, we reached
the best results with the FPGA, 34% worse with the CPU and even worse with the GPU.

We plan to to test a better OpenCL kernel for the FPGA as soon as PCI-Express v3 bus IP will
be released from Nallatech, we will test a double buffer solutions for OpenCL, we will extend the
tests using a IBM Power8 machine and use lower-budget GPUs, we will evaluate the other RTA
algorithms. The development of other algorithms for the RTA are in progress. Considering that this
problems are more cpu intensive, we expect to see bigger advantages using GPU or FPGA devices.

5. Acknowledgments

We gratefully acknowledge support from the agencies and organizations listed under Funding
Agencies at this website: http://www.cta-observatory.org/.

References

[1] B. S. Acharya, et al., Introducing the CTA concept, Astr. Phys. 43 (2013) 3.

[2] C. Bigongiari, et. al., The magic telescope, in proceeding of the International Europhysics Conference
on High Energy Physics, PoS(HEP2005)020 (2005)

[3] N. Galante, et al., Status and highlights of VERITAS in proceeding of the 5th International Meeting on
High Energy Gamma-Ray Astronomy Conference (2012)

[4] F. Aharonian, et al., Observations of the Crab nebula with HESS Astron.Astrophys. 457 (2006) 899
[astro-ph/0607333].

[5] F. Acero, et al., Fermi Large Area Telescope Third Source Catalog, ApJS, in publication.

[6] A. Bulgarelli, et al., The On-Site Analysis of the Cherenkov Telescope Array, these proceedings.

[7] J. Albert, et al., FADC signal reconstruction for the MAGIC Telescope, Nucl.Instrum.Meth. A 594
(2008) 407 [astro-ph/0612385].

[8] K. Bernlöhr, et al., Monte Carlo design studies for the Cherenkov Telescope Array, Astr. Phys. 43
(2013) 171 [astro-ph/0612385].

[9] A. Bulgarelli, et. al., The Real-Time Analysis of the Cherenkov Telescope Array Observatory, in
proceeding of the 33rd 34th International Cosmic Ray Conference, (2015).

[10] B. Chapman, et. al., Using OpenMP: Portable Shared Memory Parallel Programming, The MIT
Press, Cambridge (Massachusetts) and London 2007.

5

http://www.cta-observatory.org/
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(HEP2005)020

P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

P
o
S
(
I
C
R
C
2
0
1
5
)
9
4
4

Parallel waveform extraction algorithms for CTA Andrea Zoli

[11] J. E. Stone, D. Gohara, and G. Shi., OpenCL: A Parallel Programming Standard for Heterogeneous
Computing Systems, Computing in science & engineering 12 (2010), 66.

[12] T.S. Czajkowski, et. al., From opencl to high-performance hardware on FPGAS, in 22nd Field
Programmable Logic and Applications Conference (2012).

6

