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Energies of charged particle are determined in nuclear emulsion experiments by tracing trajecto-
ries of charged particle and analyzing their multiple scattering properties. Traditionally they use
multiple scattering theory under the gaussian approximation and determine the energies from the
mean square deflection angle. Multiple scattering theory is improved today to take account the
single and the plural scatterings together, where the mean square deflection angle almost diverges.
We examine feasibility of the most likelihood method with Moliere theory of multiple scattering

to determine the energy of charged particle. We also examine Moliere simultaneous distribution
to determine the energy more accurately.
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1. Introduction

The energy or the momentum of charged particles has been determined by angular or sagitta
method in nuclear emulsion experimeiff fracing trajectories of charged particle and comparing
those with multiple scattering theory. DONUT project applied the angular method in his nutrino
experiment, where he applied the multiple scattering theory under the gaussian approximation and
determined the momentum of charged particles from the mean square deflectiofangle [

The multiple scattering theory is improved today to take account the single and the plural
scatterings other than the multiple scattering, where the mean square deflection angle diverges so
that the momentum of charged patrticle cannot be determined by the traditional method any more.
We examine another angular method to determine the energy of charged particles by the improved
multiple scattering theory of Moliere, and further attempt to apply the Moliere simultaneous distri-
bution to determine the energy of charged particles more accurately.

2. Moliere simultaneous distribution between the deflection angle and the lateral
displacement

2.1 Fourier spectral density

Charged particles traversing through matters of thickh@ssadiation length[§] receive inu-
merable number of Coulomb scattering, so that they change their deflection@aagl lateral
displacemeny of projected components. Lét6,,t) be the simultaneous probability density
between the deflection angheand the chord-anglgy defined as

Y=yt (2.1)
and f(Z, nt,t) be its Fourier spectral density
1(0,w adedy = P [ [0cwm g e vazaene) @22)

thenf(6, y,t) is solved a4, G

2 2 2 2
f(Z.ntt) = 1exno[ Oth(“”t”) KA mw” ] 2.3)

2m 4Q(E +etu)?  4e2(E + €tu)?
whereK andQ denote the scattering constants introduced by Kamata and Nishif{@#&] and
¢ the critical energy.
Especially under the fixed energy conditioa £ 0), we have

nznf — LKU/E {(Z oo KB 02 g (KE/E2)C2 }

0 12nt 4e2/3+Q 4e2/3+Q
_ 165 s, O +nt)? s OGL?
= Blzm{(Zer) InW—Z In4€2/3+B , (2.4)
with
B-—InB=Q—-InQ+Int, (2.5)
85 = (B/Q)K?t/E2. (2.6)

Note that the logarithm of our spectral dens@) is identical with Moliére’s result in 1959,
where we should remind hjg./IoB agrees with oufly.
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2.2 Simultaneous probability density

As it holds
the double Fourier transforms of EE.D) is reduced to the double cosine transforms as

t(6,y.0dady = Y Cany [ cosoz rgnicntna. @9

The result of Moliére simultaneous distribution between th deflection ghgled the chord-angle
@ under the fixed energy condition is indicated in Fifjfor B = 8.

The simultaneous distribution can also be expressefi@sp,t)pdpd¢ in the polar coordi-
nate, satisfying

f(6,9,t)=g(p,¢,t)  with (2.9)
6 =pcosp, Y =psing. (2.10)

On the radial axis with the azimuthal angle of 0, the probability density is expressed as

P00 = F(,0.0) = - [ dzcospd) [ (2. n.dny). (2.11)

If we introduce the nev@’-y/ and{’-n't coordinates by rotating both tiey and{-nt coordinates
with ¢, the probability density on th@’ axis, org(p, ¢), is derived same way as E@.11) on the
rotated coordinate,

a(p,¢,t) = llT/ode’cos(pZ’)/_o;f(Z’cow —n'tsing,’sing +n'tcosp,t)d(n't). (2.12)

The radial variations of Moliére simultaneous distribution are indicated inZragainst the az-
imuthal anglesp of O, 11/6, 11/3, 11/2, 211/3, and571/6 for B = 8.

3. Energy determination of charged particle by using the Moliere theory of multiple
scattering

3.1 Energy decision by the most likelihood method with Moliere angular distribution

DONUT collaboration determines the momentum of charged particles from the angular dis-
tribution of particles in emulsion cloud chamber expected by the multiple scattering theory of
gaussian approximatioBi[Z]. And MACRO collaboration determines the energy of charged parti-
cles from the angular or the lateral distribution of particles in streamer tube chambers expected by
the multiple scattering theory of also gaussian approximafi@Il]. We examine the method to
determine the energy of charged particle by using the more accurate theory of multiple scattering
by Moliere [12 13 [14].

Let f(¢@,t) be the Moliere angular distribution for the projected arjkraled by the Moliere
scale angléy of Eq. 2.8), ¢ = 6/6\, irrespective of the projected lateral displacemgfii3 [13,
then we have

fo.t) = fO>@)+B (9 +B?f%(g), 0<o 3.1)
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Figure 2: Radial variation of the simultaneous
probability densityf (6,y/t,t) =g(p, ¢,t) forB=8
with the radial distance scaled W8, on the az-
Figure 1: Moliére simultaneous distribution ex-muthal anglesp of 11/6, 0, 11/3, 5m/6, 11/2, and

pressed by the probability density against the prgl/3 from top to bottom, which shows power de-
jected deflection anglé and the projected chorg-crease with the index a'bou%4.2, —39, 6.2,

angley/t, both scaled by, under the fixed energy ~6-1: —6.0, —6.0, respectively, from 8 to 10 of the
condition withB = 8. Contour map of the density is2PSCiSsa-

indicated in the bottom plane.

wheref©(g) = (2//m)e ? andB is determined fron as Eq.[Z5).
Let we getN projected angles

from N observations. As the probability of appearing projected afgiéthin d@ is
0411 (6/6u,1)d8, (3.3)

mean logarithmic likelihood.(6y) against the scale angyy is defined as
N
L(w) =N""5 In{6y*f(6/6m)}, (34)
K=1

then the scale angl8y is determined by the maximal point &f 6y ), hence the energk is
determined from EqX9).

Mean logarithmic likelihood curvels(8y ) applied to the Moliere projected-angular distribu-
tion 6,2 (8/6\,t) with Oy = 1 are expected as

L(6m) = /Ow £(6,t) {61 f (Bi/6) 6. (3.5)

The results foB = 8, 12, 16, ando are indicate in Figd All curves have maximul values at
about6y = 1, which fact indicates that the most likelihood method with Moliere projected-angular
distribution is applicable for energy decision of charged particles traversing through matters.
The maximul feature of the mean logarithmic likelihobtBy ) is more clearly indicated in
Fig.[d by the negative value of relative entropyy, defined as
Ou”f(8/6m.t)

v z/o f(0.0)In M ghe=de
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Parameter 8, Figure 4. Mean logarithmic likelihood curves
Figure 3: Mean logarithmic likelihood curves  expressed by the negative value of the relative
L(6m) applied to the Moliere projected-angular  entropy, applied to the Moliere projected-angular
distribution of 6, f(6/6y,t) with 6y = 1, for distribution with 8y = 1. Peak values are ad-
Bof8, 12, 16, ando from the bottom to the top.  justed to 0, by substituting constant values indi-
cated in the text.

- /om £(8,8)In{ 6,2 (6/6,t)}dO /Ow £(6,1)In(6,1)d6. (3.6)

3.2 Energy decision by the most likelihood method with Moliere simultaneous distribution

We apply Moliere simultaneous distribution between the deflection angle and the lateral dis-
placementf (6, ,t) or g(p, ¢,t) of Eq. (2.9, instead of the individual distribution for the deflec-
tion angle in the preceding subsection, to determine the energy of charged paticles by the most
likelihood method.

Let we getN simultaneous data between the deflection projected angle and the lateral dis-
placement (or the chord-angle) of projected components,

{(ek,L.Uk)}v k:1727"'7N (37)

from N observations. As the probability of appearing simultaneous data of projectedéagtk
chord-anglay = y/t within d@ anddy is

O 2T (6/6, W/ 6u)dOdy (3.8)
mean logarithmic likelihood.(6y ) against the scale angl is defined as

L(B) = N1 Y In{62F(8/6, /) (39)
k=1

then the scale angl8y is determined by the maximal point &f 6y ), hence the energk is
determined from EqZ 9.
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Figure 5: Simultaneous probability desnsiyp, ¢) for B= 8, 12, 16 (left, middle, right). Azimuthal angles
are taken ag; = (i—1)m/30, withi=1, 2,---, 30.

Mean logarithmic likelihood curvels(6y ) applied to the Moliere simultaneous projected dis-
tribution 6,2 (8/6w, Y/ 6um) With By = 1 are expected as

L(6u) :/_Z/_Zf(e,w)ln{@ng(e/eM,w/eM)}dedw. (3.10)

Prior to the expectation of EJ3{10), we prepared detailed numerical resultsygb, ¢) for
B =28, 12, 16 and of 30 directions, as indicated in F[§. The results foB =8, 12, 16, ando are
indicate in Figld All curves have maximul values at aba@ = 1, which fact indicates that the
most likelihood method with Moliere simultaneous distribution is applicable for energy decision of
charged particles traversing through matters.

The maximul feature of the mean logarithmic likelihob( ) is more clearly indicated in
Fig.[dby the negative value of relative entropyy, defined as

v - 6u’9(P/6u,9)
V—2/d¢/gp¢ 9(0.9) ————~——pdp

_2 /0 dé [~ a(p.8)In{8,%(p/6u.8)}pdp 2 "do | ate.#)ing(p.9)pdp. (311

The mean logarithmic likelihood curves show narower peaks in BigadZthan in Figsi3and4

So we findBy thus the energf of charged particles is more accurately determined by applying the
Moliere simultaneous distribution, than applying the individual Moliere distribution for deflection
angle.

4. Conclusion

We have found the energy of charged particle can be determined by applying the most like-
lihood method with Moliere multiple scattering theory for angular distribution, taking the single
and the plural scatterings together into account. We also have found the energy is more accurately
determined by applying the Moliere simultaneous distribution than applying the individual Moliere
distribution for deflection angle.
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Figure 7: Mean logarithmic likelihood curbes

expressed by the negative value of the relative
entropy, applied to the Moliere projected-angular
distribution with 6y = 1. Peak values are ad-
justed to 0, by substituting constant values indi-
cated in the text.

Figure 6: Mean logarithmic likelihood curves
L(6w) applied to the Moliere simultaneous
projected distributiorBy,2f(6/6w, ¥/6u) with
6w =1forB=8, 12, 16, ando from the bottom
to the top.
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