
P
o
S
(
I
C
R
C
2
0
1
5
)
9
8
3

A Prototype for the Cherenkov Telescope Array
Pipelines Framework: Modular Efficiency Simple
System (MESS)

Ramin Marx∗
Max-Planck-Institut für Kernphysik, PO Box 103980, 69029 Heidelberg, Germany
E-mail: ramin.marx@mpi-hd.mpg.de

Raquel de los Reyes
Max-Planck-Institut für Kernphysik, PO Box 103980, 69029 Heidelberg, Germany
E-mail: raquel.de.los.reyes@mpi-hd.mpg.de

The Cherenkov Telescope Array (CTA) is a ground-based γ-ray observatory that will observe the
full sky in the energy range from 20 GeV to 100 TeV from facilities in both hemispheres [1]. It
is proposed to consist of more than 100 telescopes, producing large amounts of data. Apart from
the storage system, there are also requirements on the software framework to allow efficient data
processing, i.e. robustness, execution speed and coding efficiency. This contribution will present
a plain and simple pipeline framework design prototype for CTA that builds upon well-known
tools, allowing the users to focus on physics problems without learning complicated software
paradigms.

The 34th International Cosmic Ray Conference,
30 July- 6 August, 2015
The Hague, The Netherlands

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:ramin.marx@mpi-hd.mpg.de
mailto:raquel.de.los.reyes@mpi-hd.mpg.de

P
o
S
(
I
C
R
C
2
0
1
5
)
9
8
3

MESS Ramin Marx

1. Introduction

CTA will be the first open observatory of very-high-energy γ-rays. It will be the successor
of the current generation of ground-based imaging atmospheric Cherenkov telescope (IACT) ex-
periments. Arrays may combine up to six types of telescope and up to seven types of cameras.
This design exceeds the dimension and complexity of the current IACT experiments, which are
formed by a maximum of 5 telescopes and with no more than two telescope and camera types. The
telescopes will record Cherenkov light coming from the extensive air showers (EAS) produced by
primary γ-rays and, mostly, by cosmic rays (CR). The high expected trigger rates of several tens of
kHz, together with the∼ 103 to 104 pixels per camera, will lead to huge CTA raw data rates. These
data rates must be processed by the CTA Pipelines [2] during the expected life time (∼ 30 years)
of the CTA Observatory (CTAO). This contribution presents the Modular Efficient Simple System
(MESS), a CTA Pipeline prototype. It takes into account the data challenges of the CTAO:

• The open observatory condition of CTA requires a more robust framework compared to cur-
rent experiments. CTAO has to provide consistent and reproducible results to the astronomi-
cal community.

• Due to the long lifetime of the observatory, long-term supported libraries/system will min-
imise the software maintenance costs.

• The diversity of technology within the CTAO will demand a clear modularity between the
different software components. Being able to run a variety of pipelines without recompiling
any program is an advantage and increases the reproducibility of results.

The next sections will describe the MESS prototype and preliminary results when applied to CTA
Monte Carlo (MC) data.

2. Software framework

The idea behind this proposal is that a software framework should allow developers to concen-
trate on their algorithms and not care about learning new paradigms and loose time doing redundant
work. The MESS software framework provides a robust library with clean interfaces, minimal de-
pendencies and complexity, built with proven and well-known systems. It comes with tools for
automating the redundant development processes and for creating documentation.

2.1 Dependencies

Dependencies should be minimised, because the fewer there are, the easier it is to build and
maintain the software. The MESS library is written in plain C and has no dependencies except
CFITSIO [3], which is used for storing tabular data in FITS [4] files. Whenever required, different
libraries and programs can be involved, but such dependencies are only per single module (shared
object file) and do not affect the rest of the system. The module readctamc, which reads raw
CTA MC data, needs to be linked to hessioxxx (a library that is part of the SIMTELARRAY [6]
package), which also does the pixel calibration. Other MESS programs need to be linked to GSL [7]
and PLPLOT [8] to allow plotting histograms and displaying events.

2

P
o
S
(
I
C
R
C
2
0
1
5
)
9
8
3

MESS Ramin Marx

2.2 Complexity

Library functions should be orthogonal to each other and it should be possible to combine
them in a coherent and straightforward way. Few different data types should be enough to repre-
sent the problems. The current MESS framework version, with basic IACT analysis algorithms
implemented, has 4000 lines of code (without comments), which makes it easy to understand and
to maintain. The library and basic modules are compiled in less than 3 s.

2.3 Build System

MESS uses a global Makefile that dynamically includes all Makefiles in the subdirectory, in
order to keep dependencies separated. When a new module or a new program is added, it is enough
to put just its name into the appropriate Makefile. This way, external libraries and readers/writers
for external formats can be integrated in a clean way.

2.4 Autogenerated header files and documentation

Writing and maintaining header files is not necessary anymore: MESS provides the program
c2h, which scans through all source code files (.c/.cxx) and creates header files (.h) from
them, including comments above functions, variables, type definitions etc. Another program in
MESS, h2txt, reads these autogenerated header files and converts them to text files in markdown
format. Markdown is like text, but has a few (human readable) tags to allow conversion to nicer
looking HTML with optional bold/italic script, lists, images, links and inline code. The MESS
program txt2html does this conversion, adding support for code blocks and Latex formulas on
top of markdown. So the developer only cares about the .c/.cxx files and all redundant work is
automatically done.

2.5 Versioning

Whenever the MESS library is built, git, which is used as version control system for the
MESS code, is queried to return the current version of the commit from which the library is to be
built. That data along with time and date are then written into an automatically created file, which
is linked into the MESS library. All programs linked to the MESS library can now query these data,
so the developer does not need to keep track of the versions of his software, and in bug reports, the
users can provide the version of the library.

2.6 Logging

MESS provides an infrastructure for global logging and per-module logging, so each module
can have its own log file and log level, and it can also write to the global logger.

3. Data Structures

MESS uses simple C structures, so developers can write clean code instead of using nested
getter/setter methods of classes. Porting code, for example to GPUs, and writing wrappers for
other languages is also much easier. Since all important data structures contain type and size
information, it is possible to:

3

P
o
S
(
I
C
R
C
2
0
1
5
)
9
8
3

MESS Ramin Marx

• mix several messages in a single stream,

• read new data with old code and vice versa, because messages with unknown tags can be
skipped

• go through a file quickly until an event with a certain id is found, without reading and decod-
ing all the other events into memory.

Only two different data structures are currently needed for handling all the different data of the
experiment:

Shower data is stored in the Event structure, which has an id, a timestamp and an array
of telescope events. A telescope event has the telescope id, the pixel intensities, the times of
maximum and the list of ids of significant pixels. Events are stored in the Regions-Of-Interest file
format (ROI) [5], which allows to store the full camera image, a pixel list or a region of interest in
the image.

Event parameterisations and subsystem data are stored in a Parset structure, which has an
id, a timestamp and n parameters, each of them being a vector. Parameter sets are stored in FITS
tables with 32 bit floating point precision.

4. Disk storage

MESS requires the event data to be separated from event parameterisations and subsystem
data. This keeps the data structures, interfaces and file formats significantly simpler and allows
users to access all that data with much less effort. Different calibrations, results of updated recon-
struction algorithms etc. are stored as additional extensions (HDUs) in the same FITS file, which
keeps the directories clean. To prevent excessive file access, the results of the most frequent queries
(like nightly, monthly and yearly summaries) can be stored in the respective directories. Event data
should be divided into chunks of length∼ 1s, because that allows parallelisation by simply sending
chunks to different computing nodes. All files are stored in a directory structure similar to the one
shown in figure 1. Using this storage scheme instead of a database, the full power of the shell is at
hand and it becomes easy to access the data. The Hillas parameters of one night, for example, can
be accessed with /data/2015/01/31/*/reconstruction/hillas.fits.

Figure 1: Example of a directory structure suitable for MESS; events are stored in chunks.

4

P
o
S
(
I
C
R
C
2
0
1
5
)
9
8
3

MESS Ramin Marx

5. On-the-fly selection and synchronisation

Since parameterisations and subsystems are stored in FITS tables, the powerful column and
row selection mechanisms of CFITSIO can be used if the user wants to read only a subset of the
data. This way, most of the common queries can be done on the command line - without a database
and without writing dedicated programs. For example, if the user program shall read log(E) of all
3-telescope events, it is enough to write:

program −i n "mc . f i t s [1] [NVALID(d) == 3] [c o l logE= l o g (mc_energy) ; d= m c _ i m p a c t _ d i s t] "

Accessing vector columns is also possible. This example shows how to get the impact distance of
the fifth telescope for all events with an energy above 1 TeV:

program −i n "mc . f i t s [1] [mc_energy > 1] [c o l mc_energy ; d= m c _ i m p a c t _ d i s t [5]] "

In both examples, the input file is filtered and transformed by CFITSIO according to the expressions
in the square brackets, and the user program then reads from that filtered table.

6. Modules

A module is the smallest functional unit in a MESS pipeline and it can have multiple inputs,
process them and return multiple outputs. It is defined in its own source code file and must expose
at least an init, an exec and an exit function. From this, the shared object file is generated, which
can then be dynamically loaded by the pipeline program. When loaded, parameters can be passed
to the module’s init function and there be accessed as int argc, char **argv, just like
in a standalone program. If there are more functions in the source file and if they are public
(non-static), they are made available as library functions. The module hillas, for example,
has the three obligatory module functions hillas_init(...), hillas_exec(...) and
hillas_exec(...), but it also has the function hillas_televent(...), so the users
can either define their pipeline with modules on the command line or write programs the traditional
way: an executable calling libraries.

7. Pipelines

A MESS pipeline is a set of modules, which are executed in a defined order. Each module can
access the output of one or more other modules, but circular dependencies must be avoided. Mod-
ules without parents usually read from files and then pass their data on to their children. Modules
without children usually write to files or display a plot. Pipelines can be created on the command
line by giving the types and names of the modules, their parent/child relations and their parameters.
The syntax for that is: type.name:p1,p2,.. -par1 val1 -par2 val2 ..., where
p1, p2, ... is the list of parent modules to receive data from and par1, val1, ... are the
parameter/value pairs of a module. A depth-first topological sorting algorithm then resolves the
dependency graph and returns the order in which the modules have to be initialised and executed.
Although nothing has to be compiled, it still runs as fast as a hand-written program containing the
module calls in the correct order, because only pointers are passed between modules. Even very
complex pipelines covering the complete analysis chain can be easily defined on the command line

5

P
o
S
(
I
C
R
C
2
0
1
5
)
9
8
3

MESS Ramin Marx

mess −graph g1 . d o t −p i p e l i n e \
r e a d r o i . r : −i n gamma . r o i , \
dup . d1 : r , dup . d2 : r , dup . d3 : r , \
c leanmn . c1 : d1 −m 3 −n 6 , cleanmn . c2 : d2 −m 5 −n 10 , cleanmn . c3 : d3 −m 10 −n 20 , \
h i l l a s . h1 : c1 , h i l l a s . h2 : c2 , h i l l a s . h3 : c3 , \
w r i t e p s . wps1 : h1 −o u t gamma_hi l l a s_03_06 . f i t s , \
w r i t e p s . wps2 : h2 −o u t gamma_hi l l a s_05_10 . f i t s , \
w r i t e p s . wps3 : h3 −o u t gamma_hi l l a s_10_20 . f i t s , \
w r i t e r o i . wro i1 : c1 −o u t gamma_03_06 . r o i , \
w r i t e r o i . wro i2 : c2 −o u t gamma_05_10 . r o i , \
w r i t e r o i . wro i3 : c3 −o u t gamma_10_20 . r o i ,

Figure 2: Example of a MESS pipeline doing three different image cleanings, calculating the Hillas
parameters and storing them to different files.

Figure 3: Graph corresponding to the pipeline defined above.

or in scripts, without involving external libraries or threads. Figure 2 shows an example of a MESS
Pipeline that reads full-camera images, applies different cleanings, calculates the Hillas parameters
and writes the results to disk, with the corresponding graph shown in figure 3.

8. Synchronisation

Since each event and parameter set carries the global event time, it is possible to synchronise
among different readers, for example for subsystem data, events or event parameterisations. The
sync module in MESS does this and it can be combined with the on-the-fly selection. In the fol-
lowing example (see figures 4 and 5), MC events, their Hillas parameters and their MC information
are read from three different files and synchronised such that only those events enter the pipeline
that have Hillas parameters for more than three telescopes (NVALID(hillas_w) > 3), an en-
ergy of more than 1 TeV (mc_energy > 1) and a mean impact distance of less than 100 m
(AVERAGE(mc_impact_dist) < 100):

6

P
o
S
(
I
C
R
C
2
0
1
5
)
9
8
3

MESS Ramin Marx

mess −graph g2 . d o t \
−p i p e l i n e \
sync . s : −key i d , \
r e a d r o i . r 1 : s −i n gamma . r o i , \
r e a d p s . r2 : s −i n " gamma_hi l l a s_05_10 . f i t s [1] [NVALID(h i l l a s _ w) > 3] " , \
r e a d p s . r3 : s −i n "gamma_mc . f i t s [1] [mc_energy > 1 && AVERAGE(m c _ i m p a c t _ d i s t) < 1 0 0] " , \
w r i t e r o i . w1 : r1 −o u t gamma_se lec ted . r o i , \
w r i t e p s . w2 : r2 −o u t g a m m a _ s e l e c t e d _ h i l l a s . f i t s ,

Figure 4: Example for a MESS pipeline using the synchronisation module.

Figure 5: Graph corresponding to the pipeline defined above.

9. Plotting

MESS provides a program to plot histograms of table columns of the FITS files given on the
command line. Through CFITSIO column and row selection, the desired parameter and its range
to be plotted can be specified. The following two examples assume that the Hillas parameters
of 3,6-, 5,10- and 10,20-cleaned images have already been calculated. Figure 6 shows the three
distributions of Hillas length on the left. On the right, Hillas width and Hillas length of 5,10-
cleaned images are plotted.

mess . p l o t h i s t −n b i n s 40 −i n \
" gamma_hi l l a s_03_06 . f i t s [1] [c o l h i l l a s _ l] " \
" gamma_hi l l a s_05_10 . f i t s [1] [c o l h i l l a s _ l] " \
" gamma_hi l l a s_10_20 . f i t s [1] [c o l h i l l a s _ l] "

mess . p l o t h i s t −i n \
" gamma_hi l l a s_05_10 . f i t s [1] [c o l h i l l a s _ w] " \
" gamma_hi l l a s_05_10 . f i t s [1] [c o l h i l l a s _ l] "

0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(x10
-2
)

x

P

hillas_length_03_06
hillas_length_05_10
hillas_length_10_20

0.00 0.05 0.10 0.15
0

2

4

6

(x10
-2
)

x

P

hillas_width_05_10
hillas_length_05_10

Figure 6: Hillas length for different image cleanings and Hillas width compared to Hillas length.

7

P
o
S
(
I
C
R
C
2
0
1
5
)
9
8
3

MESS Ramin Marx

10. Event display

MESS provides the infrastructure for writing flexible event displays and supplies the user with
a demo program using that functionality. Displaying the whole array with the triggered telescopes
and camera images is possible, as well as a detailed magnified view of the individual telescope
events, showing either full camera images or only the regions of interest. Each drawing routine
can receive arbitrary parameters to draw event parameterisations on top of events, change the color
palette etc. The resulting images can then be exported to different formats, for example png, eps or
pdf.

11. Conclusion

MESS is a software framework designed for data processing in γ-ray astronomy, with empha-
sis on modularity, efficiency and simplicity. It complies with the Unix philosophy and its programs
can be easily embedded in scipts. Its library allows developers to write modules and programs
quickly, and with few lines of code. The library functions can be used in C and C++ or wrapped
for scripting languages like Python.

End users can define pipelines on the command line, which gives them much more flexibility
than with config files, but without the need for programming or even scripting. Several examples
have shown how MESS pipelines can handle complex tasks that usually require writing a dedicated
program. Despite this flexibility, there is no degradation in performance or robustness, because
MESS modules are shared libraries that are selectively pulled in.

Currently, MESS can read raw CTA MC data and perform all necessary steps to produce Gam-
ma/Hadron separation plots from it, so more modules need to be developed for a complete CTA
pipeline. MESS is free software and can be downloaded from http://www.mpi-hd.mpg.de/ rmarx/mess.

References

[1] Hassan, T. et al, 2015, theses proceedings.

[2] Lammanna, G. et al, 2015, theses proceedings.

[3] http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html

[4] Pence, W. D. et al, 2010, A&A, Volume 524, December 2010.

[5] Marx, R. et al, 2015, these proceedings.

[6] K. Bernlöhr, Astropart.Phys 30, pages 149-158, 2008.

[7] https://www.gnu.org/software/gsl/

[8] http://plplot.sourceforge.net/

8

