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1. Introduction

The value of Λ established by observations of SN Ia at redshift z ≤ 1 (Riess et al., 1998;
Perlmutter et al., 1999), and in the spectrum of fluctuations of the cosmic microwave background
radiation (CMB), see e.g. Spergel et al. (2003), Tegmark et al. (2004). It was shown by Chernin
(2001, 2008) that outer parts of galaxy clusters (GC) may be under strong influence of the dark
energy (DE). DE is related to all kinds of the energy, having equation of state P = −βε , with
β close to unity, but may be not exactly equal to it. The Einstein cosmological constant Λ is
now among the possible candidates for DE. The hot gas in the galactic clusters may flow outside
due to high thermal pressure, and in the outer parts of the cluster the presence of a dark energy
(DE) facilitates the outflow. A solution is presented of hydrodynamic equations for the winds
from galactic clusters in presence of DE. It is a generalized solution for the outflows from the
gravitating body, obtained for solar and stellar winds by Stanyukovich (1955) and Parker (1963), to
the presence of DE. It implies significant changes in the structure of solutions describing galactic
winds, what had been investigated in the paper of Bisnovatyi-Kogan and Merafina (2013).

2. Accelerating expanding universe

Foundation of the view about expanding universe had been established in theoretical works
of A. Friedmann and G. Lemaitre, and was confirmed by astronomical observations of E. Hubble.
The equation for the scale factor a(t) in the uniform isotropic universe is described by the equation,
derived by A. Friedmann (see e.g. Bisnovatyi-Kogan, 2011):

ȧ2

a2 +
k c2

a2 =
8πG
3c2 ε +

Λ
3

c2. (2.1)

This equation is combined with the relation of adiabatic expansion as dε
ε+P = −dV

V = −3 da
a , V is

a volume. Let us consider a flat infinite universe with k = 0, and ultrarelativistic equation of state
P = ε/3 The equations (2.1) is reduced to

ȧ2

a2 =
8πG
3c2 ε +

Λ
3

c2, ε = ρc2 = ρ∗c2 a4
∗

a4 , (2.2)

which has a solution in the form

dx
dt

= 2

√
8πGρ∗

3
a4
∗+

Λ
3

c2x2, x = a2, a2 = a2
∗

√
8πGρ∗

Λc2 sinh

(
2

√
Λ
3

ct

)
. (2.3)

At the beginning of expansion, at small t we have a solutiom

a2 = a2
∗t

√
32π

3
Gρ∗, ρ =

3
32πGt2 , (2.4)

and for large t there is an exponential expansion at non-zero cosmological constant:

a2 =
a2
∗

2

√
8πGρ∗

Λc4 exp

(
2

√
Λ
3

ct

)
, ρ =

Λc4

2πG
exp

(
−4

√
Λ
3

ct

)
. (2.5)
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The model of the hot universe was suggested by G. Gamow, and was confirmed by A. Penzias
and R. Wilson, discovering a cosmic microwave background (CMB). To overcome some problems
existing in pure Friedmann universe, it was suggested that the very initial stages of the universe
expansion follow exponential growth of the scaling factor with time (de Sitter expansion), what
was anticipated in 1965 by Gliner (1965). The de Sitter stage in the early universe is created
not by existence of the cosmological constant, like in the original de Sitter work, but by a physical
substance, such like a scalar field, or an "excited vacuum", which mimic the cosmological constant,
having the vacuum equation of state P = −ε . The accelerated expansion is accompanied by a
transformation of the energy of the scalar field into the energy of the ordinary matter, so that the de
Sitter state is transformed into the Friedmann expansion. The stage before installing the Friedmann
expansion was named as inflation. Non-zero Lambda term, much smaller than during inflation, was
discovered by the observations of distant SN Ia, and CMB fluctuations, so presently we live during
the transition stage from from Friedmann expansion to exponential expansion stage.

For discovery of the expansion law of the present universe we need independent measurements
of the velocity, and distance to very remote objects, such like galaxies, quasars, galaxy clusters.
Observations of Supernovae Ia events, which are thermonuclear explosions in the degenerate CO
core, are used for these purposes, due to possibility to find its total luminosity by measurements of
its light curve (some type of a standard candle). The most well known examples of SN Ia remnants
in our galaxy are the remnants of SN 1572, whch explosion was observed by Tycho Brahe, and of
SN 1604, observed by J. Kepler.

Two sky surveys for search of distance SN Ia in distant galaxies had been performed by two
groups of researchers. The results of the first group, were published in two papers by Riess et al.
(1998), and Schmidt et al.(1998).
"Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Con-
stant" by Riess A.G.+ 19 authors, where 10 SNIa, with 0.16 ≤ z ≤ 0.62 were observed, and
"The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Uni-
verse Using Type Ia Supernovae" by Schmidt B.P.+ 23 authors, where 30 SNIa, with 0.35 ≤ z ≤
0.9 were observed had shown the existence of a non-zero cosmological constant, with parameters
ΩM = 0.4+0.5

−0.4, ΩΛ = 0.6+0.4
−0.5. It was claimed that unless supernovae are much different at high

redshifts, the imperfection of SNe Ia as distance indicators will have a negligible impact on using
SNe Ia as cosmological probes.

In the first paper, published by a second group, no cosmological constant was found. Here
(Perlmutter et al., 1997)+ 23 authors from ”The Supernova Cosmology Project”, in the paper titled
"Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥
0.35" it was claimed that "for a spatially flat universe (ΩM +ΩΛ = 1), we find ΩM = 0.94+0.34

−0.28
or, equivalently, a measurement of the cosmological constant, ΩΛ = 0.06+0.28

−0.34". After appearance
of papers of Riess et al.(1998), and Schmidt et al. (1998) the second paper was published, where
(Perlmutter et al, 1999) with 32 authors from ”The Supernova Cosmology Project”, in the paper
"Measurements of Omega and Lambda from observations of 42 High-Redshift Supernovae", where
SH Ia redshifts were between 0.18 and 0.83, claimed the existence of a nonzero cosmological
constant in the flat universe. In the Fig,2 from Perlmutter et al, (1999) this result follows from a
comparison of the observational data with predictions of theoretical models.

Measurements of Cosmic Microwave Background fluctuations, made from satellites Relikt,

3
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Figure 1: Hubble diagram for 42 high-redshift Type Ia supernovae from the Supernova Cosmology Project,
and 18 low-redshift Type Ia supernovae from the Calán/Tololo Supernova Survey, after correcting both sets
for the SN Ia lightcurve width-luminosity relation. The inner error bars show the uncertainty due to measure-
ment errors, while the outer error bars show the total uncertainty when the intrinsic luminosity dispersion,
0.17 mag, of lightcurve-width-corrected Type Ia supernovae is added in quadrature. The unfilled circles
indicate supernovae not included in Fit C. The horizontal error bars represent the assigned peculiar velocity
uncertainty of 300 km s−1. The solid curves are the theoretical meffective

B (z) for a range of cosmological
models with zero cosmological constant: (ΩM,ΩΛ) = (0,0) on top, (1,0) in middle and (2,0) on bottom.
The dashed curves are for a range of flat cosmological models: (ΩM,ΩΛ) = (0,1) on top, (0.5,0.5) second
from top, (1,0) third from top, and (1.5,−0.5) on bottom.

COBE, WMAP (2001), Planck (2006), and baloons: Boomegang, Maxima, CBI, ACBAR, etc,
had established a model of a flat hot universe at Ωtot = 1, and distribution between different types
of matter as: dark energy (Λ term) ΩΛ ≈0.7, dark matter (nonbarionic dark matter) ΩDM ≈0.26,
baryonic ΩB =0.04.

Equilibrium Planck radiation with temperature about 3 K was left as a result of expansion
of the hot universe, together with relict neutrino, and gravitons. Matter had separated from the
radiation at redshift z ∼ 1000. Radiation preserves non-uniformities of that period. Study of CMB
fluctuations permitted to evaluate the global parameters of the universe: Ω and its ingradients,
H (Hubble constant), determining the rate of the universe expansion around us: V = Hr, H ∼70
km/s/Mpc.

First results of Planck observation of CMB fluctuations have shown some differences from
earlier results for most cosmological parameters. The example of these correction to the Hubble
constant is shown in Fig.3 from Planck Collaboration (2013). Another corrections obtained from
Planck observations are listed in the Table.1 from the same paper.
Planck results gave new estimation of ΩΛ, H0, and put restrictions to the neutrino rest mass. and
primordial helium fraction Y0. The Hubble constant in different measurements is presented in
Tabl.1 from Planck Collaboration (2013). Recently it was found by Spergel et al.(2013), that the
217GHz × 217GHz detector set spectrum used in the Planck analysis, is responsible for some
of discrepancies with WMAP data. Another data analysis was done, which uses 47% of the sky
and makes use of both 353 and 545 GHz data for foreground cleaning. It was found that the
ΛCDM cosmological parameters Ωch2 = 0.1169 ± 0.0025, ns = 0.9671±0.0069, H0 = 68.0 ±
1.1km s−1Mpc−1, Ωbh2 = 0.02197±0.00027, ln1010As = 3.080±0.025, and τ = 0.089±0.013.
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Figure 2: Comparison of H0 measurements, with estimates of ±1σ errors, from a number of techniques.
These are compared with the spatially-flat LCDM model constraints from Planck and WMAP.

Parameter Planck+WP Planck+WP+BAO WMAP-9
Ωbh2 0.02206±0.00028 0.02220±0.00025 0.02309±0.00130
Ωch2 0.1174±0.0030 0.1161±0.0028 0.1148±0.0048

τ 0.095±0.014 0.097±0.014 0.089±0.014
H0 65.2±1.8 66.7±1.1 74±11
ns 0.974±0.012 0.975±0.012 0.973±0.014

log(1010As) 3.106±0.029 3.100±0.029 3.090±0.039
α/α0 0.9936±0.0043 0.9989±0.0037 1.008±0.020

Table 1: Constraints on the cosmological parameters of the base LCMD model with the addition of a varying
fine-structure constant. ±1σ errors are quoted.

While in broad agreement with the results reported by the Planck team, these revised parameters
imply a universe with a lower matter density of Ωm = 0.302±0.015, and parameter values generally
more consistent with pre-Planck CMB analyses and astronomical observations.

All perturbations are correlated, so to the moment of recombination amplitudes of harmonics
oscillate, showing Doppler peaks which are called also as Sakharov oscillations (Sakharov, 1965).
The results of 7 years operation of WMAP for power spectrum of CMB temperature fluctuations,
from Larson et al (2011), and same value measured by Planck from Planck Collaboration (2013),
are presented in fig.4.
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Figure 3: The 7-year temperature (TT) power spectrum from WMAP. The third acoustic peak and the
onset of the Silk damping tail are well measured. The curve is the ΛCDM model best fit: Ωbh2 = 0.02270,
Ωch2 = 0.1107, ΩΛ = 0.738. From Larson et al.(2011).

Figure 4: Planck temperature (TT) power spectrum. The points in the upper panel show the maximum-
likelihood estimates of the primary CMB. The red line shows the best-fit base ΛCMD spectrum. The lower
panel shows the residuals with respect to the theoretical model. The error bars are indicated. From Planck
Collaboration (2013).

3. DE influence on the structure of galactic clusters

In papers of Chernin (2001),(2008) the question was raised about a possible influence of the
existence of the cosmological constant on the properties of the Hubble flow in the local galaxy
cluster in close vicinity of our Galaxy. Basing on the observations of Karachentsev et al. (2006),
he concluded that the presence of the the dark energy (DE) is responsible for the formation of this
Hubble flow.

The importance of the DE for the structure of the galaxy cluster depends on the level of the
influence of DE on the dynamic properties. In particular, it is necessary to check,when the cluster
may exist in the equilibrium state, at present values of DE density, and the densities of matter,
consisting of the baryonic, and dark matter (BM and DM). This problem was investigated in papers
of Bisnovatyi-Kogan and Chernin (2012), and Chernin et al. (2013), where the structure of galaxy
clusters halo in Virgo and Coma were analysed. It was obtained that the key physical parameters
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of the dark mater halos in clusters are determined by dark energy:
(1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which

the dark matter gravity is balanced by the dark energy antigravity;
(2) the halo averaged density is close to two densities of dark energy.
Dark energy is a relativistic fluid and its description is based on General Relativity. Neverthe-

less it may be treated in terms of the Newtonian mechanics, if the force field it produces is weak in
the ordinary accepted sense. The Newtonian treatment borrows from General Relativity the major
result: the effective gravitating density of a uniform medium is given by the sum ρe f f = ρ + 3p.
With its equation of state pΛ =−ρΛ, the dark energy has a negative effective gravitating density:

ρΛe f f = ρΛ +3pΛ =−2ρΛ < 0, F(r) = FN(r)+FE(r) =−G
M
r2 +

8πG
3

ρΛr. (3.1)

which means that dark energy produces antigravity. Eq. (3.1) shows that the net force F(R) is zero
at the distance

R = RZG = [
MM

8π
3 ρDE

]1/3 = 11
MM

1015M⊙
Mpc. (3.2)

Here the observed value of the dark energy density ρDE = 0.7×10−29 g/cm3 is used. The critical
physical parameter RZG is the zero-gravity radius (Chernin 2001). Gravity dominates at distances
R < RZG, while antigravity is stronger than gravity at R > RZG.

If the radius of a system with matter mass MM is equal to the maximal radius R = Rmax, its
mean matter density (see Bisnovatyi-Kogan & Chernin 2012) is ⟨ρM⟩ = MM

4π
3 R3

ZG
= 2ρDE, where the

mass of Virgo cluster was estimated as ∼ 6×1014 M⊙, and its radius as ∼ 10 Mpc. The mass and
radius of the Coma cluster at zero gravitation radius are estimated as (Chernin et al., 2013)

Rmax = RZG = 20 Mpc, M(RZG) = 6.2×1015M⊙, (3.3)

If this is the case, the mean matter density of the system is equal to twice the dark energy density.
This prediction (Merafina et al. 2012; Bisnovatyi-Kogan & Chernin 2012) does not depend on the
density profile assumed for the cluster.

4. Newtonian approximation in description of galactic winds in presence of DE

The hot gas in the galactic clusters may flow outside due to high thermal pressure, and in
the outer parts of the cluster the presence of a dark energy (DE) facilitates the outflow. In the
Newtonian approximation, in presence of DE, we have the following hydrodynamic Euler equation
for the spherically symmetric outflow in the gravitational field of matter and DE

ρυ
dυ
dr

+
dP
dr

=−ρ
(

Gmm

r2 − Λc2r
3

)
=−ρ

(
Gmm

r2 − 8πGρΛr
3

)
. (4.1)

Here ρ and P are a matter density and pressure, respectively, mm is the mass of the matter inside
the radius r. We use here DE in the form of the Einstein cosmological constant Λ. Newtonian
gravitational potentials produced by matter Φg, and ΦΛ by DE, satisfy the Poisson equations

7
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∆ΦΛ =−8πGρΛ, ∆Φg = 4πGρ , ρΛ =
Λc2

8πG
. (4.2)

We consider, for simplicity, the outflow in the field of a constant mass (like in stellar wind) mm =M.
The Eq. (4.1) in this case is written as

ρυ
dυ
dr

+
dP
dr

=−ρ
(

GM
r2 − Λc2r

3

)
=−ρ

(
GM
r2 − 8πGρΛr

3

)
. (4.3)

The Eq. (4.1) should be solved together with the continuity equation in the form 4πρυr2 = Ṁ,
where Ṁ is the constant mass flux from the cluster. We consider polytropic equation of state,
where pressure P, and sound speed cs are defined as

P = Kργ , c2
s = γ

P
ρ
, ρ =

(
c2

s

γK

) 1
γ−1

, P =

(
c2

s

γ

) γ
γ−1

K− 1
γ−1 . (4.4)

Introduce nondimensional variables as

υ̃ =
υ
υ∗

c̃s =
cs

c∗
, r̃ =

r
r∗
, r∗ =

GM
c2
∗
,

υ∗ = c∗, ρ̃ =
ρ
ρ∗

, ρ∗ =

(
c2
∗

γK

) 1
γ−1

, P̃ =
P
P∗

, P∗ =
(

c2
∗

γ

) γ
γ−1

K− 1
γ−1 . (4.5)

In non-dimensional variables the equation (4.3) is written as

υ̃
dυ̃
dr

+
2

γ −1
c̃s

dc̃s

dr̃
+

1
r̃2 −λ r̃ = 0, λ =

Λc2r2
∗

3c2
∗

. (4.6)

The continuity equation in non-dimensional form is written as

ρ̃ υ̃ r̃2 = ṁ, c̃
2

γ−1
s υ̃ r̃2 = ṁ, ṁ =

Ṁ
Ṁ∗

, Ṁ∗ = 4πρ∗υ∗r2
∗. (4.7)

It follows from (4.4),(4.5),(4.7), that

dρ̃
ρ̃

=
2

γ −1
dc̃s

c̃s
,

dρ̃
ρ̃

+
dυ̃
υ̃

+2
dr̃
r̃

= 0. (4.8)

Using (4.8) we may write the equation of motion (4.4) in the form

dυ̃
dr̃

=
υ̃
r̃

2c̃2
s − 1

r̃ +λ r̃2

υ̃2 − c̃2
s

. (4.9)

The only physically relevant solutions are those which pass smoothly the sonic point υ = cs, being
a singular point of the Eq. (17), with υ̃ = c̃s, 2c̃2

s − 1
r̃ +λ r̃2 = 0 where r̃ = r̃c, υ̃ = υ̃c, c̃s = c̃sc.

Choosing c∗ = csc, we obtain in the critical point

υ̃c = c̃sc = 1, 2− 1
r̃c

+λ r̃2
c = 0. (4.10)

With this choice of the scaling paraneters, we have from (4.7) ṁ = r̃2
c . The physical meaning of the

parameter λ becomes clear after rewriting it, using (4.2),(4.5), in the form

8
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λ =
Λc2r2

∗
3c2

∗
= ρΛ

8π
3M

r3
∗ = ρΛ

8π
3M

r3
c

r̃3
c
=

2ρΛ

ρM

1
r̃3

c
, (4.11)

where ρM = 3M
4πr3

c
is a density of the matter after smearing the central mass uniformly inside the

critical radius rc. The value of λ is proportional to the ratio of the dark energy mass inside the
critical radius MΛ = 4π

3 r3
c ρΛ to the mass M of the central body.

The relation (4.10) determines the dependence r̃c(λ ) in the solution for the galactic wind and
accretion, in presence of DE. In presence of DE the critical radius of the flow is situated closer to
the gravitating center (in non-dimensional units) with increasing λ . The Eq.(4.6) for the polytropic
flow has a Bernoulli integral as

υ̃2

2
+

c̃2
s

γ −1
− 1

r̃
− λ r̃2

2
= h, c̃2

s =

(
ṁ

υ̃ r̃2

)γ−1

=

(
r̃2

c

υ̃ r̃2

)γ−1

. (4.12)

The dimensional Bernoulli integral H = hc2
sc. The Bernoulli integral is determined through the

parameters of the critical point, with account of (4.10), as

h =
γ +1

2(γ −1)
− 1

r̃c
− λ r̃2

c

2
=

5−3γ
2(γ −1)

− 3
2

(
1
r̃c

−2
)
. (4.13)

The dependence h(λ ) for different polytropic powers γ is given in Fig.1. Note that in presence of
DE the outflow is possible also for negative values of the Bernoulli integral h, defined equally.

The stationary solution for the wind is determined by two integrals: constant mass flux Ṁ, and
energy (Bernoulli) integral H. In absence of DE we obtain the known relations r̃c =

1
2 , h= 5−3γ

2(γ−1) .

In the outflow from the physically relevant quasi-stationary object the antigravity from DE should
be less than the gravitational force on the outer boundary, which we define at r = r∗. Therefore the
value of Λ is restricted by the relation (see e.g. Bisnovatyi-Kogan and Chernin, 2012)

2ρΛ =
Λc2

4πG
< ρ̄ =

4πM
3r3

∗
(4.14)

In non-dimensional variables this restriction, with account of (4.5),(4.6) is written as

λ <
16π2

9
= 17.55 = λlim. (4.15)

It is reasonable to consider only the values of λ smaller than λlim. It follows from (4.10), that r̃c is
monotonically decreasing with increasing λ . For λ = λlim = 17.55 we obtain r̃c = r̃c,lim ≈ 0.29.
The effective gravitational potential Φ̃ is formed by the gravity of the central body, and antigravity
of DE

Φ̃ =−1
r̃
− λ r̃2

2
.

To overcome the gravity of the central body, the value of h should exceed the maximum value of
the gravitational potential, defined by the extremum of Φ̃

h ≥ Φ̃max(r̃max) =−3
2

λ 1/3, r̃max = λ−1/3. (4.16)

9
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It follows from(26), (35), that always r̃max > r̃c. So, in presence of DE the outflow of the gas
from the cluster to the infinity is possible even at the negative values of h. In absence of DE the
non-negative value of h, and the outflow are possible only at γ ≤ 5

3 .

5. Solutions of the galactic wind equation in presence of DE

The equation (4.9) has a sound critical point of the saddle type, and two physical (critical)
solutions going through this critical point. One of this solutions describes a wind outflow, and
has a positive υ̃ . Another solution corresponds to an accretion (inflow), and has a negative υ̃
(Stanyukovich, 1955; Parker, 1963). To obtain a physically relevant critical solution of (4.9), with
c̃2

s from (4.5), we obtain expansion in the critical point with υ̃2 = c̃2
s = 1, in the form

υ̃ = 1+α(r̃− r̃c), α1 =− 2
r̃c

γ −1
γ +1

+
1
r̃c

2
γ +1

√
2+

1
4r̃c

+
λ r̃2

c

2
− γ
(

2− 1
4r̃c

− λ r̃2
c

2

)
,

α2 =− 2
r̃c

γ −1
γ +1

− 1
r̃c

2
γ +1

√
2+

1
4r̃c

+
λ r̃2

c

2
− γ
(

2− 1
4r̃c

− λ r̃2
c

2

)
. (5.1)

Here α1 corresponds to the wind solution, and α2 is related to the case of accretion where υ̃ define
the absolute value. At λ = 0 we have a well known expansion with

α1 =
4

γ +1

[√
5−3γ

2
− (γ −1)

]
, α2 =− 4

γ +1

[√
5−3γ

2
+(γ −1)

]
.

The numerical solution of (4.9) was obtained using predictor-corrector Runge-Kutta method of 4-th
order, with a fixed relative precision, written in Fortran 77, see Press et al. (1992) The integration
started from the critical point with υ̃ = c̃s = 1, using the expansion (5.1), both inside and outside
the critical point, for two types of the flow: the wind flow, corresponding to the coefficient α1 in
(5.1), and accretion flow, corresponding to α2 in (5.1). The critical solutions of the equation (4.9),
with account of (4.12), are presented in Figs.2,3 for different values of γ and λ . Both wind and
accretion solutions are presented.

The wind and accretion solutions are plotted in the same figures 5,6, but the positive velocities
correspond only to the wind solutions. The outflow solutions have increasing velocities in presence
of DE with λ > 1, but at λ = 0 the behaviour at large radius r̃ depends on the adiabatic power γ .
The velocity is increasing in the wind solution at γ = 4

3 (Fig.5). At γ = 5
3 the wind solution has a

decreasing outflow velocity with a constant Mach number Ma, see Fig.6.
The accretion solutions in Figs. 5,6 are represented by the absolute values of the inflow ve-

locity |υ̃ |, and the inflow velocity during accretion has a negative sign. The inflow velocity inside

the critical point at γ = 4
3 at all λ converges to the same free fall velocity υ̃ →−

√
2
r̃ , according to

the Bernoulli integral (4.12), with r̃ ≪ 1, in the supersonic flow with υ̃ ≫ c̃s. At γ = 5
3 the inflow

solution at r̃ ≪ 1 is approaching to the constant Mach number solution. The inflow solutions given
in Fig.6 correspond to Ma = 1. The equation (4.9) is invariant to the transformation υ̃ → −υ̃ ,
therefore the accretion solution was possible to obtain numerically for the absolute values of the
velocity.
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Figure 5: The integral curves of the wind and accretion solutions, for γ = 4/3 (left) and γ = 5/3 (right).
Here λ = 0, rc=0.5 (dashed curve); λ = 1.10, rc = 0.45 (dash-dot-dot curves); and λ = 5.13, rc = 0.37
(full curves). For nonzero λ wind solutions correspond to curves with increasing velocity at large radius.
The curves with decreasing velocities correspond to the accretion solution with negative υ , so that its abso-
lute values are presented. For γ = 5/3 at λ = 0 both wind and accretion solutions are presented by the same
curve, which corresponds to the wind for positive υ , and to the accretion for negative υ
.

The inflow solutions for the accretion starts at large radiuses by a slow motion to the gravi-
tating center. The velocity increases in a subsonic regime, and after crossing the critical point the
supersonic infall to the gravitating center starts. Note, that the accretion solutions have a physical
sense only for small λ , when the region with a attractive gravitational force is sufficiently large. In
the regions with repulsing force due to DE antigravity, the critical accretion solutions of the equa-
tion (4.9) formally exist, but they correspond to anomalous density distribution increasing with
radius, what cannot be expected in reality.

6. Discussion

It is clear that the presence of DE tends to help the outflow of the hot gas from the gravitating
object, as well as to the escape of rapidly moving galaxies (Chernin et al, 2013). Here we have
obtained the solution for outflow in presence of DE, which generalize the well-known solution for
the polytropic solar (stellar) wind. Presently the DE density exceed the density of the dark matter,
and, even more, the density of the barionic matter. The clusters which outer radius is approaching
the zero gravity radius, may not only loose galaxies, which join the process of Hubble expansion,
but also may loose the hot gas from the outer parts of the cluster. Let us consider outer parts of
the Coma cluster at radius RC = 15 Mpc, with the mass inside MC = 5 ·1015 M⊙, from Chernin et
al. (2013). For the present value of ρΛ = 0.71 ·10−29 g/cm3, supposing that RC = r∗ is the critical
radius of the wind, we obtain from (4.2),(4.67), the nondimensional constant λ as

λ =
Λc2r2

∗
3c2

∗
=

8π
3

ρΛr3
∗

M
≈ 0.59, c∗ =

√
GMC

RC
≈ 1200 km/c. (6.1)
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Figure 6: The integral curves for the wind solution, at γ = 5/3 and λ = 0, rc=0.5 (dashed curve); λ = 1.10,
rc = 0.45 (dash-dot-dot curve); and λ = 0.58, rc = 0.47 (full curve)
.

It corresponds to the temperature about T ≈ 6 · 107 K, kT ≈ 5 keV. Observations of the hot gas
distribution in the Coma cluster (Watanabe et al., 1999) on ASCA satellite have shown a presence
of hot region with kT = 11−14 keV, and more extended cool region with kT = 5±1 keV, what is
in good accordance with our choice of parameters.

Wind solutions for λ=0; 0.58; 1.1 are presented in Fig.7. The solution with λ=0.58 is the
closest to the description of the outflow from Coma cluster. The density of the gas in the vicinity of
r = rc is very small, so the flow may be considered as adiabatic (polytropic) with the power γ=5/3.
Without DE such gas flow is inefficient, its velocity is decreasing ∼ 1/

√
r. In presence of DE the

wind velocity is increasing 2 times at the distance of ∼ 5rc ∼ 75 Mpc from Coma.

After quitting the cluster the gas is moving with acceleration, acting as a snowplough for the
intergalactic gas. The shell of matter, forming in such a way, may reach a high velocity, exceeding
considerably the speed of galaxies in cluster. If the shell meets another cluster, or another shell
moving towards, the collision of such flows may induce a particle acceleration. Due to high speed,
large sizes, and low density such collisions may create cosmic rays of the highest possible energy
(EHECR). We may expect the largest effect when two clusters move to each other. The influence
of DE is decreasing with with a red shift, therefore the acceleration of EHECR in this model should
take place in the periphery, or between, the closest rich galaxy clusters. The example of collision
of two clusters of galaxies was given in observations of Clowe et al. (2006). The structure of two
colliding stellar winds was calculated by Eichler and Usov (1993), and it has some similarities with
the structure of the colliding clusters.

After quitting the cluster the gas is moving with acceleration, acting as a snowplough for the
intergalactic gas. The shell of matter, forming in such a way, may reach a high velocity, exceeding
considerably the speed of galaxies in cluster. If the shell meets another cluster, or another shell
moving towards, the collision of such flows may induce a particle acceleration. Due to high speed,

12
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large sizes, and low density such collisions may create cosmic rays of the highest possible energy
(EHECR). We may expect the largest effect when two clusters move to each other. The influence
of DE is decreasing with with a red shift, therefore the acceleration of EHECR in this model
should take place in the periphery, or between, the closest rich galaxy clusters. Note, that similar
mechanism of particle acceleration is expected in collision of two stellar winds (Eichler and Usov,
1993), but in much lower energy region.

7. Conclusions

The density of DE, measured from SN Ia distributions, and spectra of fluctuations CMB per-
turbations, imply the necessity to take it into account in calculations of the structure of galaxy
clusters.

The existing observational indefiniteness in the parameters of Local cluster, as well as of Virgo
and Coma clusters, indicate to the dynamic importance of DE at outer edges of the galaxy clusters.

Hot gas in GC is accelerated in presence of DE, and EHECR may be accelerated in rapid
colliding winds from clusters, moving to each other
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DISCUSSION

D. BISIKALO: 1. Why do you consider the solution without self-gravity term?
2. Does the radiative cooling important for colliding wind shocks (for accelerating of cosmic rays)?

G. BISNOVATYI-KOGASN: 1. The wind is very rarefied, and its self-gravity may be neglected.
2. Here only wind acceleration is considered, where cooling is very small because of alow density.
The consideration of the process in the shock, at wind collision, is another problem, where CR
acceleration together with different cooling mechanisms should be analyzed.
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