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We summarize basic observational results on Sagittarius A* obtained from the radio, infrared and

X-ray domain. Infrared observations have revealed that a dusty S-cluster†object (DSO/G2) passes

by SgrA* within ∼120 AU, the central super-massive black hole of the Milky Way. It is still

expected that this event will give rise to exceptionally intense activity in the entire electromag-

netic spectrum. Based on February to September 2014 SINFONI observations the detection of a

spatially compact and red-shifted hydrogen recombination line emission allowed us to obtain a

new estimate of the orbital parameters of the DSO. We have not detected strong pre-peribothron‡

blue-shifted nor post-peribothron red-shifted emission above the noise level at the position of

SgrA* or upstream the orbit. The peribothron position was reached in May 2014. Our 2004-2012

infrared polarization statistics show that SgrA* must be a very stable system - both in terms of the

geometrical orientation of a jet or accretion disk and in terms of the variability spectrum which

must be linked to the accretion rate. Hence, polarization and variability measurements are the

ideal tools to probe for any change in the system as a function of the DSO/G2 fly-by. Due to the

2014 fly-by of the DSO, an increased accretion activity of SgrA* may still be upcoming. Future

observations of bright flares will improve the derivation of the spin and the inclination of the

SMBH from NIR/sub-mm observations.
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∗Speaker.
†The S-cluster is the cluster of high velocity stars surrounding SgrA*; see Eckart&Genzel (1997).
‡Periapse of orbit around a black hole
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1. Introduction

Sagittarius A* (Sgr A*) at the center of our galaxy is a highly variable near-infrared (NIR) and
X-ray source which is associated with a 4× 106 M⊙ super-massive central black hole (SMBH).
Gillessen et al. (2012) report a fast moving infrared excess source which they interpret as a core-
less gas and dust cloud approaching SgrA* on an elliptical orbit. Eckart et al. (2013ab) present
Ks-band identifications (from VLT and Keck data) and proper motions of the DSO. The DSO is only
one of several infrared excess sources in the central few arcsecond (see Fig. 1a). In Shahzamanian
et al. (2015) we present new results obtained from observations of polarized near-infrared (NIR)
light from Sgr A*. The observations have been carried out using the adaptive optics instrument
NACO at the VLT UT4 in the infrared Ks-band (2.00µm - 2.36µm) from 2004 to 2012. Several
polarized flares were observed during these years, allowing us to study the statistical properties of
linearly polarized NIR light from Sgr A*.

2. Results

2.1 Infrared Imaging Spectroscopy

Based on L’-band imaging, an infrared excess source within the central cluster of high velocity
S-stars was found to approach the immediate vicinity of SgrA* (Gillessen et al. 2012). In addition,
Brγ line emission was reported by Gillessen et al. (2013a) and Phifer et al. (2013). In Eckart et
al. (2013ab) we report the identification of Ks-band emission from a source at the position of the
L’-band identification. The proper motions of all accessible Ks-band data agree well with those
obtained from L’-band and Brγ line emission. In 2013 the source is confused by the presence of
fore- or background sources in the L’-band and probably also in the Ks-band (Fig. 3). Phifer et al.
(2013) show that in addition to the background flux at the position of the DSO no source brighter
than mK=20 can be determined. Gillessen et al. (2013b) report a marginal spatial extension of the
Brγ line emission in their SINFONI data and find an intrinsic Gaussian FWHM size of 42±10 mas.
Given the peculiar orientation of the source estimated orbit, precise determinations of the source
elongation along the orbit are difficult to obtain. Combining these observational facts indicate that
a dusty object - possibly associated with a stellar object (see Fig. 1b) - is on an elliptical orbit
around SgrA*.

In Valencia-S. et al. (2015) and Eckart et al. (2014) and announced in the Astronomical
Telegram 2014 (ATel #6285) we report new near-infrared (1.45µm - 2.45µm) observations of the
Dusty S-cluster Object (DSO/G2) during its approach to the black hole at the center of the Galaxy,
that were carried out with ESO VLT/SINFONI between February and September 2014 (Fig. 2).
We detect spatially compact Brackett-γ and Paschen-α line emission from the DSO/G2 at about
30-40 mas east of SgrA*. This is in agreement with the position reported by Ghez et al. (2014;
ATel #6110) and Witzel et al. (2014) based on L’-band observations in March 2014. The velocity
of the source, measured from the red-shifted emission, is about 2700 km/s. No strong blue-shifted
emission above the noise level is detected at the position of SgrA* or any position upstream the
presumed orbit. The full width at half maximum of the Brackett-γ line is 50 Å, i.e., no significant
line broadening with respect to 2013 is observed. This is a further indication for the compactness
of the source. For the moment, the flaring activity of the black hole in the near-infrared regime has
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Figure 1: a) Sketch of the distribution of stars and dusty objects in the central 2.4”×1.6” of the Milky Way
based on K- and L’-band images by Meyer et al. (2014) and Eckart et al. (2013). With the exception of
SgrA* we have coded the nomenclature used by Eckart et al. (2013) in white and the nomenclature used by
Meyer et al. (2014) in green color. For the cometary tailed dusty source X7 see also Muzic et al. 2010. b)
Sketch of a young star - seen edge on and not to scale. Possible source regions for a young accreting star to
generate broad lines are indicated by arrows.

not shown any statistically significant increment. We conclude that the DSO/G2 source had not yet
reached its peribothron before May 2014 and that the increased accretion activity of SgrA* is still
upcoming.

Through Jalali et al. (2014) we have shown how young and dusty stellar objects can be formed
in the immediate vicinity of a super-massive black hole. The observational data was also used
to derive the orbit of this object and to predict its peribothron transition. Due to the presumably
high ellipticity of the orbit only very weakly curved sections of the orbit were available and first
predictions of the peribothron transition time in 2013 (Gillessen et al. 2012) proved to be incorrect.
The inclusion of (or even restrictions to) the Brγ line emission resulted in new predictions for very
early 2014. The fact that in the L’-band the telescope point spread function (PSF) is intrinsically
larger and therefore more susceptible to diffuse extended emission is, probably the main reason for
this discrepancy.

However, the predicted interactions of the gas and dust with the strong gravitational field of
SgrA* have shown that the gas itself may also not be a good probe of the exact orbital motion. This
is supported by the spatial extent and the velocity gradient across the Brγ line emission. It is also
highlighted by the expected interaction of the DSO with the ambient medium and the gravitational
field. Therefore, even though the recently derived Brγ based orbital solutions are in reasonable
agreement (Meyer et al. 2014), the orbital elements may still be uncertain. Using the results of
our measurements with SINFONI in 2014 and the published Keck data (Meyer et al. 2014) we
revisited the determination of the DSO/G2 orbit. Given the red emission is only about 40 mas
East of SgrA* and at a radial velocity of about 2700 km/s and only a blue-shifted line emission at
about −3200m/s was measured after May 2014, we obtained a new orbital solution which places
the peribothron passage in mid-May 2014, rather than in 2014.2 as estimated earlier by Meyer et
al. (2014). However, the orbital elements are very similar to the ones derived earlier. With the
high ellipticity and half-axis length around 30 mpc we obtain a peribothron distance of the order of
120 AU (Fig. 4).
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2.2 Emission from Radio to X-rays

Eckart et al. (2012) model the mm- to X-ray spectrum of the SgrA* flare emission with a
Synchrotron Self Compton (SSC) mechanism. They show that the flare emission can be described
via a combination of a SSC model followed by an adiabatic expansion of the source components
(e.g. Eckart et al. 2008). This involves up-scattered sub-millimeter photons from a compact source
component that has a spectrum which at the start of the flare peaks at frequencies between several
100 GHz and 2 THz. The overall radio-spectrum peaks close to 300 GHz. Details of the sub-
millimeter emission of SgrA* and the surrounding circum nuclear disk is given in Garcia-Marin et
al. (2011). A combined SSC and adiabatic expansion model can easily explain the observed flare
fluxes and time delays that cover the spectral range from X-rays to the mm-radio domain. So far
in the X-ray observable ≥ 2 keV band no elevated continuum flux density level or extraordinary
X-ray variability - possibly triggered by the DSO fly-by - has been reported (Haggard et al. 2014;
ATel #6242) Such an extra emission would have been expected to originate from the shock-heated
gas (Gillessen et al. 2012). Although SgrA* is extremely faint in the X-ray regime, it is strongly
variable in this domain of the electromagnetic spectrum (Baganoff et al. 2001, 2003, Porquet et
al. 2003, 2008, Eckart et al. 2012, Nowak et al. 2012, Barrire et al. 2014, Mossoux et al. 2015,
Neilsen et al. 2013). The statistical investigation of the near-infrared variability by Witzel et al.
(2012) suggests that the past strong X-ray variations are potentially linked with the origin of the
observed X-ray echos from a putative strong SgrA* flare (Revnivtsev et al. 2004, Sunyaev &
Churazov 1998, Terrier et al. 2010, Capelli et al. 2012).

If the underlying mechanism for the NIR/X-ray continuum spectrum of the SgrA* flare emis-
sion is indeed a combination of synchrotron radiation and X-ray radiation through the Synchrotron
Self Compton (SSC) process then the bright required X-ray flare fluxes can be explained as a nat-
ural phenomenon and no exceptional variability event needs to be claimed. All these phenomena
make SgrA* an ideal source to study the physics of extremely low luminosity super massive black
holes. Events like the fly-by of the DSO may dominate the variability of galactic nuclei in this
phase across the entire electromagnetic spectrum. However, the onset of the activity phase of the
magnetar PSR J1745-2900 at a separation of only about 3 arcseconds from the Galactic center
presented a problem for the SgrA* monitoring program in 2013 (Mori et al. 2013, Shannon &
Johnston 2013, Rea et al., 2013) and required higher angular resolution to discern the sources.

2.3 Infrared Polarimetry

Linear polarization at 2.2µm and its statistics and time variation constrain the physical condi-
tions of the accretion process onto this super-massive black hole. With an exponent dN/dS∼4 of
the slope of the number density histogram for flare fluxes above 5mJy (see definition in Shahzama-
nian et al. 2015 and Witzel et al. 2012), the distribution of polarized flux density is closely linked to
the single state power-law distribution of the total Ks-band flux densities reported earlier. Closely
following the concepts we laid out in Witzel et al. (2011) we find typical polarization degrees of the
order of 10% to 20% and a preferred polarization angle of 13◦±15◦. Simulations show the uncer-
tainties are probably dominated by observational effects, implying independently of flux density,
that the intrinsic polarization degree and angle are rather well constrained. Since the emission is
due to optically thin synchrotron radiation, this preferred polarization angle is very likely coupled

3
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to the intrinsic orientation of the SgrA* system, i.e. a disk or jet/wind scenario associated with the
super-massive black hole. If they are indeed linked to the structural features of the source the data
imply a rather stable geometry and accretion process for the SgrA* system.
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Figure 2: The expected SgrA* X-ray luminosity during the fly-by of the DSO (based on Fig.13 in Gillessen
et al. 2013b). Filled circles indicate times for which we obtained NACO or SINFONI data. The threefold
branching towards the right indicates three different time evolutions of the activity during the aftermath
(increase, continuation and drop). No exceptional activity has been observed until August 2014. The source
remained in a state of normal activity (as during the last years, e.g., Witzel et al. 2012) with a few flare
events that reached the known mean flare level.

4 29 55 84 110 139 165 205 311 648 599719.13e+00 6.39e+01 1.19e+02 1.73e+02 2.28e+02 2.83e+02 3.38e+02 4.29e+02 6.11e+02 1.41e+03 1.50e+05
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Figure 3: The last 2013 (September) images of the Galactic center in the NIR K-band (left) and L’-band
(right) before NACO was dismounted from UT4 and the source went into the southern summer and was only
observable again in early 2014. The (confused) position of the DSO is marked by a downwards arrow and
the position of SgrA* by an upward arrow. Both positions are also marked by a blue circle.

3. Discussion and conclusions

As we did not detect a strong blue-shifted side of the Brγ emission - at least in the predicted
strength, a prime working hypothesis is that the DSO is a young accreting star. There may be
an extension to its dust shell and the current estimates of the orbit (assuming a bound elliptical
orbit) bring it quite close to the black hole such that we cannot exclude that it may come to an
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Figure 4: Three representations of the DSO orbit around the super-massive black hole shown under different
viewing angels. The orbit calculations include our April-September SINFONI data points. The position of
SgrA* is shown as a small red filled circle. At a distance of 8 kpc one millipasec (mpc) is about 39 mas. The
right panel shows the ’true’ sky-view (z-axis towards observed).

increased activity of SgrA*. With respect to previous investigations of short and long term vari-
ability of SgrA* no deviation from ‘normal’ activity has been observed until now (Witzel et al.
2012; Zamaninasab et al. 2010, 2011; Eckart et al. 2006). Excess of short time flares (with an
orbital time scale of 20min or shorter) would have allowed us to study accretion disk physics, tur-
bulences in a disk or highly fractal accretion stream. Further spectroscopic measurements of the
DSO are required to track it along the high acceleration part of its orbit in order to get a proper de-
termination of its actual orbit. In the beginning of 2013 the L’-band identification of the DSO got
confused. Therefore, it is essential to check the L’-band identification after peribothron to answer
the question: Does the source simply move out of confusion or has the dust interacted with the ISM
(enhanced density and radiation field) near the central black hole?

Young accreting pre-main sequence stars are usually variable. The line emission currently
shows no strong (>30%) variability over the past years - it is, however, essential to monitor the
strength of the line emission since variability may contribute to the identification of the object as
a young star. It is currently unclear what the role of the so called ‘tail emission’ of the G2/DSO
source is. It can best be seen in its Brγ line emission. A future determination of its motion (line of
sight and proper motion) will help to decide if it accelerates, and potentially belongs to the DSO,
or whether it belongs to the general back- and foreground emission (potentially associated with
the mini-spiral) that is abundant and wide spread in the central parsec of the Milky Way. Our po-
larization statistics show that SgrA* must be a very stable system - both in terms of geometrical
orientation of a jet or accretion disk and in terms of the variability spectrum which must be linked
to the accretion rate. Hence, polarization and variability measurements are the ideal tool to probe
for any change in the system as a function of the DSO fly-by (Shahzamanian et al. 2015). In
order to make progress in understanding the physical processes responsible for the radio to X-ray
emission of SgrA*, and to better discern the flaring non-thermal from the extended non-variable
Bremsstrahlung component (Baganoff et al. 2003) it is imperative for future X-ray missions to
provide higher angular resolution and sensitivity. This will then allow us to expand our studies to
the X-ray flux density variations in faint phases. The possible counterparts of these fainter X-ray
variations could the be studied in the NIR and radio domain. Higher sensitivity in the X-ray domain
may also open the door to search and potentially find line emission from the immediate vicinity of
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SgrA*. Alternatively, this could be achieved for particularly bright X-ray flares as well. X-ray line
emission could be used as a further tool to study the dynamics of matter (e.g., Valencia-S. et al.
2012) near the super-massive black hole.
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