
P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

Architecture of the LHCb Distributed Computing
System

Federico STAGNI

E-mail: federico.stagni@cern.ch

Philippe CHARPENTIER∗

E-mail: philippe.charpentier@cern.ch

Christophe HAEN

E-mail: christophe.haen@cern.ch

Zoltan MATHE

E-mail: zoltan.mathe@cern.ch

Cinzia LUZZI

E-mail: cinzia.luzzi@cern.ch

Joel CLOSIER

E-mail: joel.closier@cern.ch

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:federico.stagni@cern.ch
mailto:philippe.charpentier@cern.ch
mailto:christophe.haen@cern.ch
mailto:zoltan.mathe@cern.ch
mailto:cinzia.luzzi@cern.ch
mailto:joel.closier@cern.ch


P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

The LHCb Distributed Computing system is based on the DIRAC interware, and includes many
LHCb-specific extensions to form the BeautyDIRAC package. BeautyDIRAC is implementing
the LHCb computing model. It handles workflows for all the distributed computing activities of
LHCb. BeautyDIRAC provides extensions of the DIRAC components and interfaces, including a
secure web client, python APIs and CLIs. The LHCb Production Management System (PMS) ex-
poses to physics teams a powerful interface allowing the submission of complex requests for tasks
involving a large number of jobs (productions). The PMS manages all types of LHCb production
activities: simulation, reconstruction of real and simulated data, physics selection of events (strip-
ping), working group analysis and event indexing. Automatized testing phases are implemented
for simulation productions, as well as productions’ validation and completion. Managers of sim-
ulation productions can therefore test, submit and verify a large number of production requests
with a minimal effort. The testing phase is both a functional and a performance test, using a ded-
icated testing facility. Physics groups requesting productions can follow their progress through a
user-friendly web interface. The PMS is built on top of the LHCb extensions of the Dirac Data
Management (DMS) and Workload Management systems (WMS), which are highly integrated
through the DIRAC components. The productionsâĂŹ tasks are handled by the BeautyDirac ex-
tension of the Dirac Transformation System (TS) from their creation to their completion. Tasks
requiring input datasets are fully data-driven (using the DMS), as new files becoming part of a
dataset can automatically generate the creation of new tasks. It is therefore quite easy to submit
chains of productions, some of which consume as input dataset the output datasets of others. For
simulation production chains, an agent is also in charge of creating new tasks until the required
number of simulated events is available. The tasks are submitted as jobs to the WMS and even-
tually run on a large palette of resources (Grid sites, Cloud sites, HPC centers, computer clusters,
volunteer computing platformsâĂę). User jobs are submitted through the same WMS as produc-
tion jobs, which allows prioritizing jobs and running seamlessly user and production jobs within
the same "pilot jobs", that constitutes a resource overlay in the DIRAC WMS. In this contribution
we shall describe the synergy between the various BeautyDIRAC components (DMS, TS, WMS,
PMS). We shall present in some details the LHCb Production Management System and show how
it is used by a large community of physicists. We shall give examples on how very large produc-
tions can be centrally handled very efficiently by a small operations team. Finally, we shall give
an overview of the LHCb Computing Operations’ successes of the past few years.

International Symposium on Grids and Clouds 2015
15-20 March 2015
Academia Sinica, Taipei, Taiwan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.



P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

LHCbDIRAC Philippe CHARPENTIER

1. Introduction

DIRAC[9][1] is a community Grid solution. Developed in python, it offers powerful job sub-
mission functionalities, and a developer-friendly way to create services, agents, and executors,
together with the integration of external components.

Services expose an extended Remote Process Call (RPC) and Data Transfer (DT) implemen-
tation. Agents are a stateless light-weight component, comparable to a cron-job. Executors are
designed around two components: the Mind knows how to retrieve, store and dispatch tasks, and
Executors are the working processes that know what to do depending on the task type. Other types
of components that are not developed within DIRAC can be included, and managed as well.

Being a community Grid solution, DIRAC can interface with many resource types, and with
many providers. Resource types are, for example, a computing element (CE), a catalog, or a stor-
age. DIRAC provides a layer for interfacing with many CE types, and different catalog and storage
types. It also gives the opportunity to instantiate DIRAC types of sites, CEs, storage elements (SE)
or catalogs.

DIRAC has been initially developed inside the LHCb[7] collaboration, as a LHCb-specific
project, but since 2010 the LHCb-specific code resides in the LHCbDirac extension while DIRAC
is VO-agnostic. In this way, other VOs, like Belle II [4], or ILC/LCD [2] have developed their
custom extensions to DIRAC.

DIRAC is a collection of sub-systems, each constituted of services, agents, and a database
backend. Sub-systems are, for example, the Workload Management System (WMS) or the Data
Management System (DMS). Each system comprises a generic part, which can be extended in a
VO-specific part. DIRAC provides also a highly-integrated web portal. Many DIRAC components
can be run on their own, without the need for an extension. Each DIRAC installation can decide
to use only those agents and services that are necessary to cover the use case of the communities
it serves to, and this is true also for LHCb. There are anyway many concepts that are specific
to LHCb, that can not reside in the VO-agnostic DIRAC. LHCbDirac knows, for example, some
concepts regarding the organization of the physics data, and has to know how to interact with the
LHCb applications that are executed on the worker nodes (WN).

LHCbDirac handles all the distributed computing activities of LHCb. Such activities include
real data processing (e. g. reconstruction, stripping and streaming), Monte-Carlo simulation and
data replication. Other activities are groups and user analysis, data management, resources man-
agement and monitoring, data provenance, accounting for user and production jobs, etc..

LHCbDirac is actively developed by few full time “programmers”, and some contributors. For
historical reasons, there is a large overlap between DIRAC and LHCbDirac developers. The LHCb
extensions of DIRAC also includes extensions to some of the web portal pages, and new LHCb
specific pages.

While DIRAC and its extensions follow independent release cycles, LHCbDirac is built on
top of an existing DIRAC release. This means that the making of a LHCbDirac release has to be
carefully programmed, considering also the release cycle of DIRAC. In order to lower the risks of
introducing potentially dangerous bugs in the production setup, the team has introduced a lenghty
certification process that is applied to each of the release candidates.

2



P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

LHCbDIRAC Philippe CHARPENTIER

This paper is organized as follows: section 2 explains the architecture of some of the sys-
tems that form the LHCb production system, introducing the concepts used, together with a short
description of their technical implementation. The section concludes explaining the production
system at work. Within section 3, we explain a capability of our simulation jobs: their elastic-
ity. Section 4 explains the management of productions, with a look at operational issues. Section 5
gives a brief explanation of pilots 2.0, a new generation of pilots recently introduced. Final remarks
are given in section 6.

2. DIRAC and LHCbDIRAC systems and concepts

Within this section, we will explain briefly some of the concepts and systems of DIRAC and
LHCbDIRAC. It is not in our interests to cover all the aspects of DIRAC: rather, we will concentrate
on those tools, systems, and concepts that forms the backbone of what is used to run Production
jobs for LHCb.

2.1 DIRAC job workflows

A workflow is, by definition, a sequence of connected steps. DIRAC provides an implemen-
tation of the workflow concepts in one of its Core packages, with the declared scope of running
“complex” jobs, i.e. jobs who run one application after another, whose input/outputs are usually
directly connected to each others. The implementation comes in the interchangeable formats of an
XML file, an extended python dictionary, or Job Description Language (JDL), a know format for
describing jobs running on distributed systems.

All production jobs, as well as user jobs and test jobs, are described using DIRAC workflows.
As can be seen in figure 1, each worfklow is composed of steps, and each step includes a number
of modules. These workflow modules are connected to python modules, that are executed in the
specified order by the jobs. Parameters can be specified at any level: workflow, step, and even
modules.

Figure 1: Concepts of a job Workflow: each workflow is composed by a number of steps.

2.2 Transformation System

The DIRAC Transformation System is used for handling “repetitive” work. It has two main
uses: the first is for creating job productions, and the second for data management operations.
When a new “Production Jobs” transformation is requested, a number of transformation tasks are
dynamically created, based on the input files (if present), and the “plugin” specified. A “plugin”
specifies the way the tasks are created, and can decide where the jobs will run, or how many input

3



P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

LHCbDIRAC Philippe CHARPENTIER

files can go into the same task. Each of the tasks pertaining to the same transformation will run the
DIRAC workflow specified when the transformation is created. Figure 2 shows the basic concepts
behind the implementation.

Figure 2: Concepts of the Transformation System: each Transformation has a number of similar tasks,
which may become a Job when submitted to the WMS.

A task, when inside the transformation system, is not yet a Grid job nor a data management
operation. For this last step, agents are defined, that upon inspections of the Transformation System
tables, will submit the tasks either to the Workload Management System, or the Data Management
System. The Transformation System, unless when being used just for simulation activities, can
not live as a stand-alone system: whenever there are input data to be handled, external Metadata
and Replica catalogs are needed. For LHCb, the Metadata and Replica Catalogs are the LHCb
Bookkeeping [5], presented in the next section, and the DIRAC File catalog (DFC: [8]). Figure 3
shows some components of the Transformation System implementation.

Figure 3: Schematized view of the design of the Transformation System.

2.3 The LHCb Bookkeeping System

The LHCb Bookkeping System is integrated within LHCbDIRAC, and it is the LHCb data

4



P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

LHCbDIRAC Philippe CHARPENTIER

recording and data provenance tool. The Bookkeeping System is widely used inside the Production
System, by a large fraction of the members of the Operations team, and by all the physicists doing
data analysis within the collaboration. Being recognized as a key system by the collaboration, its
design and implementation were subject to important modifications throughout the years, but has
been stable enough for the last few years.

The bookkeeping is not necessarily a tool for doing distributed computing. Among its func-
tions, users and machines are retrieving datasets for analysis and productions, together with meta-
data, like data taking and simulation conditions, or event types and file types. The bookkeeping is
a read-only catalog for general users. Unlike other DIRAC systems, where MySQL is the prime
choice as RDBMS, the CERN Oracle backend service has been chosen instead. Figure 4 shows the
main components within this system.

Figure 4: The LHCb Bookkeeping: a data recording and data provenance tool.

2.4 The Production Request System

The Production Request System is a way to expose users to the production system. It is an
LHCbDIRAC developement, and represents first of all a formalization of the processing activities.
A Production Request (PR) is a combination of steps, that can be created by any users, provided
that there are formal steps definition in the steps database. In order to run, each PR has to be
accepted by a member of the Physics Planning Group, and by one the production managers. If
a PR is accepted is ready to be submitted to the LHCb grid, as one or more “Job Productions”.

5



P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

LHCbDIRAC Philippe CHARPENTIER

Steps inside a PR are then grouped and run by production jobs. Production managers can decide to
group production steps the way they prefer. Figure 5 shows this simple concept. As per reminder,
section 2.2 explained the Transformation System as a way to submit and manage Productions, and
this is exactly what happens here: Production Requests are split in as many Transformations as the
number of needed productions.

Figure 5: Concepts of a Production Request: each request is composed by a number of steps. Steps are
grouped and run by productions.

Creating a step, a production request, and subsequently launching such production request
are all operations done using a web interface, integrated in the LHCbDIRAC web portal, in a user-
friendly way. The production request web page also offers a simple monitoring of the status of each
request: for example, the percentage of processed events, as requested, is reported and publicly
available. Such information is also used, for simulation productions, to trigger their automatic
completion. Figure 6 shows a screenshot of the Production Request and Production steps web
pages.

Figure 6: Web pages for creating, modifying, launching and monitoring a Production Request.

6



P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

LHCbDIRAC Philippe CHARPENTIER

2.5 The LHCb Production System

Figure 7 shows all the concepts explained in the previous sections put together. One thing
that should be noticed is how application steps, defined by users via the Production steps web
page, are executed as Job workflow steps by each job produced by the Transformation System.
The finalization steps assures, among performing several different operations, that output data is
uploaded and registered.

Figure 7: All concepts together.

3. Elastic Simulation jobs

When it comes to ease of management, simulation productions jobs have a decidive advantage
over data processing jobs: being strictly CPU-bound, they can run on almost every type of resource.
Figure 8 explains a simple concept of LHCb simulation jobs: its elasticity.

Figure 8: Elastic simulation jobs

Considering the fact that most of today’s computing resources are limited in time (think about
batch systems, for example) LHCb decided that it would have been of great help if short jobs
would have been always present, for filling short queue slots with jobs. LHCb simulation jobs have
added elasticity because the amount of events produced is determined only at run time, once the job

7



P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

LHCbDIRAC Philippe CHARPENTIER

Figure 9: CPU work vs number of events produced by each simulation job, for a single production

already knows about the time left, the power of the machine, and the estimated amount of CPUtime
necessary for simulating a single event.

Figure 9 shows a quick analysis of the jobs of one simulation production, consisting of about
thirty thousands jobs. As can be seen, jobs were producing different number of events depending
from the power of the machine and the CPU time left.

4. Productions Management

Doing productions management means managing a production from its start, to its end. It
includes tesing, monitoring, consistency checks, and archival.

4.1 Automations specific of Simulation requests

Simulation Production Requests represent the largest fraction of Job Productions requests,
with a ratio of about 10:1 with Data processing production requests. Simulation Production Re-
quests are also, for several reasons, easier to handle with respect to data processing production
requests, having no input data, a quicker lifecycle, and also requiring less strict consistency checks
when the same productions end, due to the inner nature of simulated data. LHCb developed several
automations for handling Simulation production requests.

For example, when a Simulation PR is started, its simulation production go through a testing
phase before being fully submitted. Within this phase, a limited amount of jobs are created and
submitted to a site chosen for testing, and each of the submitted job during this phase will produce

8



P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

LHCbDIRAC Philippe CHARPENTIER

a fixed amount of events. Productions undergoing a testing phase are monitored by a dedicated
agent, and when all the jobs are finished, an evaluation takes place: if all jobs failed, the PR is
rejected. Instead, if jobs are successful, results are evaluated, and among few other checks, the
CPUTime per event (CPUe) is calculated. It’s at this moment that the Job description is modified:
CPUe is added, destination changed, and so on.

Another type of automation happes while PRs are actively producing data: since each PR of
type simulation needs to produce at least a requested amount of events, in case not enough events
are produced, simulation productions are automatically extended.

4.2 Closing productions

There’s a number of consistency checks that are common to all types of PRs. These checks
happen when the production is at its the end, which means, for simulation productions, that enough
events have been produced, and for other types of productions that all its input files have been
processed. Figure 10 shows which types of consistency checks take place. Once successfully com-
pleted, productions can be be archived, so their jobs can be removed, as well as their transformation
tasks, and logs can be archived.

Figure 10: Consistency Checks

5. Pilots to fly in all the skyes

DIRAC has recently introduced a new generation of pilots, dubbed pilots 2.0, that is a com-
plete rewriting from the previous implementation. Pilots 2.0 can be sent from agents, targeting
Computing Elements and thus becoming "pilot jobs", or can be started by Worker Nodes, often in
the form of Virtual Machines, that are exposed by IAAS (Infrastructure As A Service), or IAAC
(Infrastructure As A Client).

Today’s distributed computing has seen the emergence of IAAS in the form of cloud comput-
ing, and IAAC like VAC [6], or even mixed solutions, like those provided by volunteer comput-
ing projects like BOINC [3]. Experiments’ distributed computing resources became more etero-
geneous: in other words, the grid is not any more (only) The Grid. Community solutions like

9



P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

LHCbDIRAC Philippe CHARPENTIER

(LHCb)DIRAC wants to hide such eterogeneity from the final users. There are two possible ap-
proaches: developing resource directors for each and every resource type, or creating a generic,
configurable script, that can be sent, or fecthed, and run, by every resource type. We followed the
second solution, leading to a new generation of pilots, the “pilots to fly in all the skyes”. A pilot 2.0
can run on every computing resource, e.g.: on CREAM Computing elements, on DIRAC Comput-
ing elements, on Virtual Machines in the form of contextualization script, or IAAC (Infrastructure
as a Client) provided that these machines are properly configured.

Pilots 2.0 are easy to configure and extend. A pilot has, at a minimum, to:

• install DIRAC (or its extension)

• configure DIRAC (or its extension)

• run the JobAgent

LHCb extended Pilots 2.0 changing the installation procedure of LHCbDIRAC: LHCbDIRAC
is not fecthed from a remote web server, rather it’s setup from CervVM-FS. Figure 11 shows simply
how LHCbDIRAC generic pilots are running on each of its computing resource.

Figure 11: Pilots setup LHCbDIRAC from CVMFS. If they fail, they fall back downloading a tarball from
a web server

10



P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

LHCbDIRAC Philippe CHARPENTIER

6. Summary and conclusions

LHCbDIRAC is a DIRAC extension used for all the distributed computing activities of LHCb.
DIRAC has proven to be a scalable, and extensible software. LHCb is, up to now, its main user and
main contributor, and LHCb created the most advanced extension among DIRAC communities.
An LHCbDirac installation, intended as the combination of DIRAC and LHCbDirac code, is a full,
all-in-one system, which started to be used for only simulation campaigns, and it is now used for
all the distributed computing activities of LHCb.

The most consistent extension is represented by the production system, which is vital for
a large part of LHCb distributed activities. It is also used for datasets manipulations like data
replication or data removal, and some testing activities. During the last years, we have seen how
the number of jobs handled by the Production system steadily grew, and represents now more than
half of the total number of jobs created. LHCbDirac provides extensions also for what regards
its interfacing, with the system itself, and for the handling of some specific data management
activities. The development and deployement processes have been adapted, over the years, and
have now achieved a higher level of resiliance. The development cycle is such that LHCbDIRAC
has about one major release every three or four year, while we create two or three minor releases
per year; patch releases are as frequently as required (weekly, on average).

The current LHCbDIRAC installation is spread over thirty servers, with around fifty services
and a hundred agents running. About twenty MySQL databases serves the production instances,
with the obvious exception of the Bookkeeping database. LHCb is currently looking into introduc-
ing NoSQL databases and Queueing systems into the current production system.

DIRAC, together with LHCbDirac, fully satisfies the LHCb needs of a tool for handling all its
distributed computing activities.

References

[1] A Casajus, K Ciba, V Fernandez, R Graciani, V Hamar, V Mendez, S Poss, M Sapunov, F Stagni,
A Tsaregorodtsev, and M Ubeda. Status of the dirac project. Journal of Physics: Conference Series,
396(3):032107, 2012.

[2] C Grefe, S Poss, A Sailer, A Tsaregorodtsev, the Clic detector, and physics study. Ilcdirac, a dirac
extension for the linear collider community. Journal of Physics: Conference Series, 513(3):032077,
2014.

[3] N HÃÿimyr, J Blomer, P Buncic, M Giovannozzi, A Gonzalez, A Harutyunyan, P L Jones,
A Karneyeu, M A Marquina, E Mcintosh, B Segal, P Skands, F Grey, D LombraÃśa GonzÃąlez, and
I Zacharov. Boinc service for volunteer cloud computing. Journal of Physics: Conference Series,
396(3):032057, 2012.

[4] T Kuhr and the Belle Ii Distributed Computing Group. First production with the belle ii distributed
computing system. Journal of Physics: Conference Series, 513(3):032050, 2014.

[5] Zoltan Mathe and Philippe Charpentier. Optimising query execution time in lhcb bookkeeping system
using partition pruning and partition-wise joins. Journal of Physics: Conference Series,
513(4):042032, 2014.

[6] A McNab, F Stagni, and M Ubeda Garcia. Running jobs in the vacuum. Journal of Physics:
Conference Series, 513(3):032065, 2014.

11



P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
2

LHCbDIRAC Philippe CHARPENTIER

[7] F Stagni, P Charpentier, R Graciani, A Tsaregorodtsev, J Closier, Z Mathe, M Ubeda, A Zhelezov,
E Lanciotti, V Romanovskiy, K D Ciba, A Casajus, S Roiser, M Sapunov, D Remenska, V Bernardoff,
R Santana, and R Nandakumar. Lhcbdirac: distributed computing in lhcb. Journal of Physics:
Conference Series, 396(3):032104, 2012.

[8] A Tsaregorodtsev and S Poss. Dirac file replica and metadata catalog. Journal of Physics: Conference
Series, 396(3):032108, 2012.

[9] A Tsaregorodtsev and the Dirac Project. Dirac distributed computing services. Journal of Physics:
Conference Series, 513(3):032096, 2014.

12


