
P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Integrating Network-Awareness and
Network-Management into PhEDEx

Vlad Lǎpǎdǎtescu∗

Caltech / USA
E-mail: vlad@cern.ch

Tony Wildish
Princeton / USA
E-mail: awildish@princeton.edu

ANSE Collaboration †

ANSE (Advanced Network Services for Experiments) is an NSF funded project, which aims to
incorporate advanced network-aware tools in the mainstream production workflows of LHC’s two
largest experiments: ATLAS and CMS. For CMS, this translates in the integration of bandwidth
provisioning capabilities in PhEDEx, its data-transfer management tool.
PhEDEx controls the large-scale data-flows on the WAN across the experiment, typically handling
1 PB of data per week, spread over 70 sites. This is only set to increase once LHC resumes
operations in 2015.
The goal of ANSE is to improve the overall working efficiency of the experiments, by allowing
for more deterministic times to completion for a designated set of data transfers, through the use
of end-to-end dynamic virtual circuits with guaranteed bandwidth.
Through our work in ANSE, we have enhanced PhEDEx, allowing it to control a circuit’s lifecycle
based on its own needs. By checking its current workload and past transfer history on normal
links, PhEDEx is now able to make smart use of dynamic circuits, only creating one when it’s
worth doing so. Different circuit management infrastructures can be used, via a plug-in system,
making it highly adaptable.
In this paper, we present the progress made by ANSE with regards to PhEDEx. We show how
our system has evolved since the prototype phase we presented last year, and how it is now able
to make use of dynamic circuits as a production-quality service. We describe its updated software
architecture and how this mechanism can be refactored and used as a stand-alone system in other
software domains (like ATLAS’ PanDA).
We conclude, by describing the remaining work to be done ANSE (for PhEDEx) and discuss on
future directions for continued development.

International Symposium on Grids and Clouds (ISGC) 2015,
15-20 March 2015
Academia Sinica, Taipei, Taiwan

∗Speaker.
†B. Ball, A. Barczyk, J. Batista, K. De, S. McKee, A. Melo, H. Newman, A. Petrosyan, P. Sheldon, R. Voicu

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:vlad@cern.ch
mailto:awildish@princeton.edu

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

1. Introduction

1.1 PhEDEx

PhEDEx[1] is the data-placement management tool for the CMS[2] experiment at the LHC. It
manages the scheduling of all large-scale WAN transfers in CMS, ensuring reliable delivery of the
data. It consists of several components:

• an Oracle database, hosted at CERN
• a website and data-service, which users (humans or machine) use to interact with and control

PhEDEx
• a set of central agents that deal with routing, request-management, bookeeping and other

activities. These agents are also hosted at CERN, though they could be run anywhere. The
key point is that there is only one set of central agents per PhEDEx instance

• a set of site-agents, one set for every site that receives data
PhEDEx was originally conceived over ten years ago now, and the architecture still reflects design
decisions made at that time. Then, the network was expected to be the weakest link in the develop-
ing Worldwide LHC Grid (WLCG)[3]. Networks were expected to have bandwidth of the order of
100 Mb/sec, to be unreliable, and to be poorly connected across the span of the CMS experiment.
Accordingly, PhEDEx will back off fast and retry gently in the face of failed transfers, on the as-
sumption that failures will take time to fix, and that there is other data that can be transferred in
the meantime. This can lead to large latencies caused by transient errors, with subsequent delays
in processing the data.
The data-transfer topology was designed with a strongly hierarchical structure. The Tier-0 (CERN)
transferred data primarily to a set of 6-7 Tier-1 sites, and each Tier-1 site handled traffic between
itself, the other Tier-1s. and it’s local Tier-2 sites. Tier-2’s wishing to exchange data would have to
go via Tier-1 intermediaries. This kept the transfer-links (i.e. the set of (source,destination) pairs)
mostly in the realm of a single regional network operator, the only cross-region links were used by
Tier-1s which were assumed to have the expertise to debug problems and keep the data flowing. It
also kept the overall number of transfer links low, since the majority of sites (the Tier-2s) had only
one link, to their associated Tier-1 site.
Today, the reality is very different. The network has emerged as the most reliable component
of the WLCG; problems with transfers tend to be at the end-points rather than in the network
itself. Bandwidths of 10 Gb/sec between Tier-2 sites is common in many areas, and 100 Gb/sec
connectivity is starting to appear. Even where the bandwidth is still relatively low, connections are
quite reliable, so data can be transferred effectively. This has led CMS to embrace a fully connected
transfer mesh in which all sites are allowed to connect to any other site, so the number of transfer
links has risen from about 100 to nearer 3000.

1.2 ANSE

CMS has decided to address these limitations, and is considering a number of possible avenues for
the future of PhEDEx[4]. The ANSE1 [5] project is addressing some of them, specifically how to

1A project funded by NSF CC-NIE program, initially for two years, which started in January 2013

2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

make PhEDEx more aware of the network status, and how to provide PhEDEx with the means to
control the network by way of virtual circuits and bandwidth-on-demand (BoD).

2. Initial prototype

2.1 Introducing circuit awareness

As described, PhEDEx consists of two different types of agents: central and site agents. As such,
the integration of dynamic circuits can be done at one of those levels.
Even though at a site level only a local, site centric, view of the network (and transfer queues)
exists, it was decided that integrating circuit awareness here, was a good compromise between
ideal required functionality and the complexity of the task at hand.
The initial efforts[6] focused on providing a prototype based on the FileDownload site agent. In
addition, for the purposes of this prototype, FDT[7] was chosen as the transfer backend. The
FDT tool is a fast, lightweight transfer tool, which integrates IDCP2 [8] OSCARS[9] (On-Demand
Secure Circuits and Advance Reservation System) calls.

2.2 Standard FileDownload agent

The FileDownload agent in PhEDEx is one of the site agents3 and it’s responsible for the exe-
cution of file transfers. The agent (as all PhEDEx agents) is event driven using the Perl Object
Environment framework, operates in pull mode4 and executes transfers from its transfer queue.
The transfer queue is continuously updated by the FileRouter agent and contains information about
all due transfers from the different source nodes (site) that the agent has to execute. For each
source-destination pair of PhEDEx nodes, the FileDownload agent organizes the files in a way that
is suitable for the transfer tool which is going to be used. This consists in splitting the queue of
files into separate transfer jobs. Each transfer jobs usually contains several tens of files. The agent
executes one or more transfer jobs in parallel, depending on the site’s configuration, then verifies
that the files have been correctly delivered before reporting back to the database with the transfer
results.
At any given time, PhEDEx only knows if two sites have or haven’t got connectivity between them,
but knows nothing about the physical network path existing between them. This means that when
dealing with any pair of source-destination nodes, the FileDownload agent executes the transfer on
the default network path available between the two storage servers involved in the transfer. Even if
available, the agent can’t use alternative transfer paths since it has no knowledge of them.

2.2.1 PFNs and LFNs

PhEDEx transfers files in bulk, in what is called a transfer job. Each transfer job knows the source
and destination URLs of the file being transferred as well as monitoring and logging information.
In PhEDEx these URLs are called Physical File Names (PFNs) and encode the transfer protocol
being used, the hostname (or IP) of the storage on which the file is located and the local path of the

2InterDomain Controller Protocol
3Each site runs one or more copies of this agent.
4Files are downloaded from a source site.

3

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

file on the storage. The hostname present in the PFN, doesn’t necessarily point to the actual server
on which file replicas reside, but points to the entity that knows where the file is located. This is
particularly important when dealing with FTS[10] and gridFTP. The PFNs are actually constructed
from Logical File Names (LFNs) and a look-up table which each site maintains and uploads to the
central database.

2.3 Prototype FileDownload agent

Since the FileDownload agent is instrumental in transferring files between sites, it was picked as
the best place where the functionality needed for circuit awareness could be added.

• The FileDownload agent, can now estimate the amount of work remaining to be done for
each source-destination pair. This estimation is based on simple monitoring statistics that
PhEDEx gathers, and information on its own download queue. If there is significant5 work
remaining to be done, a circuit is requested.

• After a circuit is requested, the agent checks for duplicate circuits, creates a status file (used
in case of an abnormal agent shutdown), calls the circuit backend for requesting a circuit, then
creates a timeout timer for the reply. If it doesn’t receive a reply from the circuit backend in
the allotted time, the request is considered as failed.

• Once the reply from the circuit backend is received, the state of the request is updated and
saved to disk. A new timer used to teardown the circuit is started.

• The FileDowload agent also routinely verifies that the state of circuits in memory matches
what was saved on disk.

2.4 Test setup

The prototype was tested on ANSE’s testbed using two PhEDEx test sites (Figure 1). Each test site
was composed of a storage server and a PhEDEx site server. On each storage server we used one
disk controller managing 8 SSDs. Two 10Gbps virtual circuits were created for the purposes of this
test. One of the circuits was used to model a shared link in which PhEDEx had to compete with
other traffic. This background traffic was generated by Iperf and consisted of a continuous stream
of UDP packets at 5Gbps. The second circuit served as the dedicated link. The main purpose
of this test wasn’t to show that we can saturate a 10Gbps link with PhEDEX, but that a PhEDEx
FileDownload agent is able to switch to using a new path in a transparent manner and with no down
time. The first part of the test consisted of a 10 hour run with PhEDEx transfers on the shared link.
After this time, PhEDEx switched to using the dedicated circuit and continued transfers for another
10 hours. PhEDEx was setup up to run a single 450 GB transfer job at a time, each one comprised
of 30 files of 15 GB each.

2.5 Results

The results are summarised in Figure 2. This plot portrays the transfer speeds that PhEDEx
achieved in our test scenario. The left half of the plot shows the PhEDEx throughput in the first
part of the test while it was competing with the iperf traffic. Naturally, this limits PhEDEx traffic to
600MB/sec (4800 Gbps). The right part of the plot, displays the transfer speeds PhEDEx achieved

5arbitrary limit set initially to 6 hours

4

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

Figure 1: PhEDEx testbed for ANSE

on an empty link, with no competing traffic. An effective doubling of throughput is seen, with
PhEDEx being able to fill up the whole 10 Gbps link. The seesaw look of this plot is linked to the
fact that PhEDEx has a delay between finishing one job and starting the next. This is due to various
factors: pre/post validation, preparation of copyjobs or even time spent by the backend itself before
actually launching a transfer. Because of these delays, the average rates reported by PhEDEx (Fig-
ure 3) will always be lower than the average rates of each individual transfer job. Lastly, Figure 2
also shows the fact that there was no interruption in service when PhEDEx moved from one link to
another. This test demonstrates the potential usefulness of using virtual circuits in PhEDEx.

Figure 2: View of PhEDEx-only transfers on both the shared and dedicated path

2.6 Prototype limitations

The prototype proved helpful in demonstrating that circuits can be useful, and that circuit awareness
can be integrated into PhEDEx, specifically at the site level. The design decisions taken in the
development process mirror the need for a fast working prototype and this ultimately had an impact
on its ultimate usefulness.

• Non-modular design: All of the control logic was contained in the FileDownload agent. This
meant that the part that requests circuits and manages their lifecycle could not be separated
from the FileDownload agent. This was needed in order to create a stand alone application
that could be used external tools as well.

• Single circuit backend: Relied on a single method of requesting circuits (DYNES). For every
different circuit provider used, a major change in code was required.

5

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

Figure 3: View of PhEDEx only transfers on both the shared and dedicated path

• Relied on FDT as a transfer tool: Unfortunately, this transfer tool is not widely used in
production. Our production ready version should at least support the most common protocols
out there (ie. FTS/SRM/gridFTP)

In addition to these decisions, it was assumed that a simple storage system would be used. In all
transfers involving the prototype, data was always moved from server to server, not from a storage
farm to a storage farm. This becomes an issue when when extrapolating from a prototype to a
production infrastructure since, it is assumed that the PFNs that PhEDEx receives, correspond to
the actual location of files on a server. In this scenario, the endpoints of the circuits are known:
the hostnames/IPs in a PFN correspond to a circuit endpoint. In a transfer involving the storage
farm, the PFN points to a server which then redirects to one of the replicas available. Until this
redirection is done there is no way of knowing which servers will be involved in the transfer,
therefore the endpoints of the circuit are unknown.

3. Towards a production ready software

After the success of the prototype we were ready to design the production solution. The production
ready version of the system had to:

• Support multiple circuit backends
• Separate all PhEDEx logic from circuit lifecycle management
• Provide a REST interface for external application control
• Provide a robust service to the application, regardless of potential instabilities in the under-

lying network service

This redesign took the simple extension of the FileDownload agent to the software that is used
today, whose class diagram is shown in Figure 4.

6

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

3.1 What was changed?

3.1.1 Circuit agent

All of the logic initially inserted in the FileDownload agent has now been extracted and placed in
the CircuitAgent, an agent directly extending the FileDownload agent. This opens the possibility
of deploying the software in production and only using the circuit integration part with select sites.
This is done by just by modifying a line in the PhEDEx config files. Another advantage is that
operators can quickly roll back to the normal FileDownload agent if the CircuitAgent misbehaves
during integration
The CircuitAgent no longer contains the logic related to the lifecycle management of circuits. This
has been delegated to a new entity called the ResourceManager.

3.1.2 ResourceManager

The ResourceManager handles the lifecycle of circuits on behalf of PhEDEx and external pro-
grams. It can be viewed as a stand-alone entity, as it can receive calls directly from PhEDEx or
interact with external applications (like PanDA[11]) via a new REST API.
The new API supports the following calls:

• createCircuit(to, from, lifetime, bandwidth): creates a circuit
• removeCircuit(to, from): tears down a circuit
• getInfo()

– RESOURCES: returns all info currently available (circuits active or expired 6)
– BACKEND_TYPE: returns the circuit backend name used to provision circuits
– RESOURCE_HISTORY: returns all info on expired circuits
– LINKS_BLACKLISTED: returns all the links currently blacklisted 7

– ONLINE_CIRCUIT, to, from: provides info on a specific active circuit
Another important feature is that the ResourceManager can now use multiple circuit providers via
a plug-in system. Two circuit providers are supported at the moment: DYNES[12] and NSI[13]. A
third plug-in (Dummy) is provided for test purposes only.
The sequence diagram presented in Figure 5 shows the main events at work in the software, as well
as the interaction order between them.

3.2 Circuit providers

When ANSE began it was assumed it would use the DYNES infrastructure to provide Layer 3
circuits between a select number of sites. DYNES was regarded as a "dynamic network cyber-
instrument" and spanned over 40 US universities and 14 Internet2 connectors. It was based on the
implementation of IDCP (Inter-Domain Circuit Protocol) developed by ESnet and Internet2 (with
cooperative development from GEANT and GLIF as well).
As official funding ended for DYNES, the lack of continued support forced a switch to differ-
ent technologies. To this end, NSI was chosen as the replacement for DYNES as it is presently
supported by many important network providers around the globe (ESnet, Internet2, GEANT, etc.)

6The queue of expired circuits is limited to the last 1000 entries
7If a link is blacklisted, it means no circuit requests can be issued on it until it is whitelisted

7

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

Figure 4: Class diagram of the circuit management software integrated in PhEDEx

3.2.1 What is NSI?

NSI stands for Network Service Interface and is defined as the interface between a NS requestor
agent and a NS provider agent, to request a transport connection. The requestor could be a host,
middleware or network provider, while the provider could be a home or campus network, or even
a national infrastructure provider.
NSI provides different functionalities:

• Resource management: Scheduling, reservation, instantiation, negotiation
• Resource information: Service discovery, topology exchange, monitoring, history, security

NSI[14] supports both tree and chain models of service chaining, and it’s effectively a two phase
reservation system (Figure 6).

• First phase
– Reservation is made
– Availability is checked
– Resources are (temporarily) held

• Second phase
– Requestor commits or aborts the reservation
– Should the requestor fail to act within a certain time limit, the reservation is released

The NSI plug-in implemented in our software uses an NSI CLI tool which was provided by ESnet.

4. Finding a solution

The software presented in the previous section, came a long way from the prototype that preceded

8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

Figure 5: Sequence diagram of the circuit management software integrated in PhEDEx

it, however the complete solution to bringing circuit awareness and management into production is
still under development.

4.1 Difficulties in using NSI

Although NSI is now the most popular implementation that promises to provide circuits in a pro-
duction environment, it comes nonetheless with a few limitations.

Provides a layer 2 circuit: In contrast to Dynes which provided Layer 3 circuits between two
servers, NSI only provides a Layer 2 circuit. This means that the transfer backends used in PhEDEx
cannot directly use it. A Layer 3 path has to be created on top of the Layer 2 circuit. Constructing
such a path means having privileged access to the site’s network infrastructure - something that is
not trivial, especially with the start of LHC operations in 2015.
Circuit ends at the border router: The Layer 2 path doesn’t end at the storage servers, nor does
it end at the storage farm’s router. The Layer 3 path needs to be created not just on top of the
circuit, but also from the border routers to the storage
Guarantee bandwidth is not supported by all providers: The motivation of using circuits in
PhEDEx is two fold: provide more deterministic transfer times and provide a way of privileging
select traffic. If even a single circuit provider involved in an inter-domain transfer doesn’t guarantee
the bandwidth which PhEDEx asks for, then the advantages of using circuits in PhEDEx may be
lost.
NSI adoption is still limited: Even though NSI has a lot more support from big network providers,
adoption into production is still limited at this time.

9

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

Figure 6: The NSI Reservation State Machine

4.1.1 Difficulties in dealing with Layer2 circuits

Since the transfer backends can’t directly used Layer 2 circuits, a Layer 3 path needs to be estab-
lished between the storage servers, or at least between the routers of the storage farms.
Establishing a Layer 3 path, is non-trivial since:
It requires topology and routing info: PhEDEx is a very high-level software. It only knows about
its transfer queue, name of sites, and name and sizes of datasets, blocks and files. Its monitoring
information is limited and the PFNs involved in the transfer don’t point directly to the file replica
used in the data movement.
Direct access to the site’s network: Perhaps the biggest challenge in establishing a Layer 3 path is
the fact that one requires direct access to the site’s network infrastructure. Doing live modifications
of the routing information on any production network is controversial enough, even more so given
that the infrastructure is critical to the success of LHC’s Run 2.

4.2 Difficulties in using FTS/SRM

Not all difficulties in coming up with a solution stem from using NSI as a circuit backend. FTS/SRM
and gridFTP are the most popular protocols involved in data transfer and naturally any solution that
we propose should at the very least work with them.

10

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

The problem here is best described in Figure 7.
In a (PhEDEx) file transfer, two PFNs are always involved: the source and destination PFNs.
Ideally, these PFNs should directly point to the physical storage location of the files that need to be
transferred. With FTS and SRM, the PFNs don’t reflect that. They are only Storage URLs (SURL)
and they point to the storage farm’s FTS server. In order to get the exact location of the file, FTS
needs to pick a file replica from one of the storage elements. Only once that’s done, and the SURL
is transformed into a Transfer URL (TURL), can a transfer begin.
This is particularly important because the actual servers involved in the transfer, must be known in
order to establish circuits between them.

Figure 7: View of PhEDEx-only transfers on both the shared and dedicated path

4.3 Proposed solution

Ideally, any proposed solution should:
• Work in a multiple VO environment
• Try and deal with privileged and unprivileged traffic on the same path
• Work with FTS/SRM and gridFTP
• Be as un-intrusive into the site’s operations as possible

The solution which was put forward is presented in Figures 8 and 9.
• The ResourceManager is used to request a Layer 2 circuit between the border routers of sites

A and B. The request can come from either PhEDEx or any external application that uses our
REST API.

• Once the Layer 2 circuit is up:
– A wrapper is used to retrieve all the storage servers (looking in the TURLs) involved in

the transfer. This information is passed to an OpenFlow controller
– The ResourceManager informs the OpenFlow controller that a new Layer 2 path is

available.
• The OpenFlow controller adds routing information in all the OpenFlow switches, directing

all traffic coming from servers involved in the transfer, onto the newly created circuit

11

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

Figure 8: Global view of our proposed solution

Figure 9: In depth view of our proposed solution

5. Summary and future plans

PhEDEx has been very successful at managing data-flows on the WAN for the CMS collabora-
tion. Nonetheless, its architecture is based on design decisions that start to become invalid, and
in order to continue to scale and perform for the future, it must evolve, taking advantage of new
technologies.
Over the course of the past two years, the ANSE project has made significant progress towards
integrating network awareness into PhEDEx. A prototype was created and tested , demonstrating

12

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
8

Network-Management in PhEDEx Vlad Lǎpǎdǎtescu

the essential features required for circuit integration into PhEDEx. Using the lessons learned during
the prototype development, a new improved version was designed, which is going to be released in
production shortly. The new system is capable of functioning independently from PhEDEx, it can
be controlled remotely via a REST interface and it is modular, being able to use multiple circuit
providers.
The remaining work in ANSE, focuses more on the network aspect of the solution. While the
PhEDEx software is ready to make use of circuits as soon as they mature into a production ready
version, the interim solution still relies on more work on our part, mainly in extending a circuit
from storage to storage. This is where ANSE will invest its resources in the following months.

References

[1] Egeland R, Metson S and Wildish T 2008 Data transfer infrastructure for CMS data taking, XII
Advanced Computing and Analysis Techniques in Physics Research (Erice, Italy: Proceedings of
Science)

[2] The CMS Collaboration 2008 The CMS experiment at the CERN LHC JINST 3 S08004

[3] Eck C et al. 2005 LHC Computing Grid Technical Design Report CERN-LHCC-2005-024

[4] Bonacorsi D and Wildish T 2013 Challenging CMS Computing with Network-Aware Systems
submitted to CHEP 2013

[5] LHCONE Point-to-Point Service Workshop, December 2012
http://indico.cern.ch/event/215393/session/1/contribution/8/material/slides/1.pdf

[6] International Symposium on Grids and Clouds 2014
http://pos.sissa.it/archive/conferences/210/021/ISGC2014_021.pdf

[7] Fast Data Transfer (FDT) http://fdt.cern.ch/

[8] InterDomain Controller Protocol http://www.controlplane.net/

[9] Guok C, Robertson D, Thompson M, Lee J, Tierney B, Johnston W 2006: Intra and Interdomain
Circuit Provisioning Using the OSCARS Reservation System ICBCNS 2006

[10] Alvarez Ayllon A, Kamil Simon M, Keeble O and Salichos M 2013 FTS3 - Robust, simplified and
high-performance data movement service for WLCG submitted to CHEP 2013

[11] ATLAS collaboration, 2008: PanDA: distributed production and distributed analysis system for
ATLAS Journal of Physics: Conference Series, Volume 119, Part 6

[12] Dynes: DYnamic NEtwork System
https://www.terena.org/activities/e2e/ws3/slides/101129-dynes-Artur.pdf

[13] OGF Network Service Interface https://www.terena.org/activities/e2e/ws2/slides2/11_NSI_Eduard.pdf

[14] NSI Connection Service v2 https://www.ogf.org/documents/GFD.212.pdf

13

