
P
o
S
(
I
S
G
C
2
0
1
5
)
0
2
6

P
o
S
(
I
S
G
C
2
0
1
5
)
0
2
6

Geneva 1.6:
Improving the Performance of
Highly Concurrent Workloads

in Parametric Optimization

Dr. Rüdiger Berlich∗

Gemfony scientific UG (haftungsbeschränkt)
E-mail: r.berlich@gemfony.eu

Dr. Sven Gabriel
Gemfony scientific UG (haftungsbeschränkt)
E-mail: s.gabriel@gemfony.eu

Dr. Ariel García
Gemfony scientific UG (haftungsbeschränkt)
E-mail: a.garcia@gemfony.eu

This paper discusses strategies for decreasing execution times of highly concurrent workloads in
parametric optimization, on the example of version 1.6.1 of Geneva, a collection of optimization
algorithms that focusses on problem domains with particularly long running evaluation functions.
Particular emphasis lies on the Courtier broker architecture used for parallelization in environ-
ments ranging from many-core systems and GPGPU to Grids and Clouds. The paper also intro-
duces other means that have proven to be useful for the reduction of overall compute time, such
as acyclic creation of random numbers or avoidance of regions of parameter space that are known
to lead to invalid results.

International Symposium on Grids and Clouds 2015
15-20 March 2015
Academia Sinica, Taipei, Taiwan

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:r.berlich@gemfony.eu
mailto:s.gabriel@gemfony.eu
mailto:a.garcia@gemfony.eu


P
o
S
(
I
S
G
C
2
0
1
5
)
0
2
6

P
o
S
(
I
S
G
C
2
0
1
5
)
0
2
6

Streamlining the Parallelization of Highly Concurrent Workloads Dr. Rüdiger Berlich

1. Introduction and Context

The acronym Geneva stands for Grid-enabled evolutionary algorithms. The library was initially
developed for the parametric optimization of particle physics analysis [4, 6, 8], but is today also
used in the automotive industry, for the optimization of the acoustics of exhaust systems [5]. The
term parametric optimization refers to procedures that, through iterative evaluation of candidate
solutions, search for those settings that lead to optimal solutions. If only a single evaluation crite-
rion is used, searching for optimal solutions can be likened to the minimization or maximization
of a mathematical function. However, in the general case, many standard mathematical procedures
cannot be applied, as the evaluation of a parameterset might be performed in program code, not
through a mathematical function. Hence the only information available to an optimization algo-
rithm could be the numeric evaluation of a parameter set at a given location in the parameter space.
Metaheuristic optimization algorithms, such as Evolutionary Algorithms, are nevertheless quite ca-
pable of finding sufficiently good solutions to a problem, however without usually being able to
yield the theoretically best result. Additional computing power may help, however, as more itera-
tions will allow the optimization algorithm to perform a more thorough search. Likewise, where
an optimization algorithm does not mandate a fixed population size, larger populations will yield
better results. Minimally useful population sizes will strongly depend on the size of the parameter
space, as will the number of iterations until a sufficient optimum is found. The evaluation of in-
dividuals is then by far the most frequent action that an optimization algorithm needs to perform.
Here the term “population” refers to all individuals constituting a given iteration, and “individual”
refers to a set of parameters, combined with one or more evaluation criteria. Where, as is the
case for Geneva, algorithms target particularly complex and computationally expensive evaluation
functions, optimization runs may last for hours or even days. Reducing overall execution times
then becomes critically important. In order to achieve this goal, Geneva allows parallel execution
on many-core systems, Cluster, Grid and Cloud, as well as through an optional GPGPU-backend.
This is of particular importance for long running evaluation functions, as parallelization may hap-
pen most easily on the level of the evaluation of candidate solutions, and may be implemented
independently of the actual optimization algorithm. Note, though, that the discussion in this paper
goes beyond the design chosen to allow efficient execution on a wide range of parallel devices, as
other factors may directly impact overall execution times.

As performance figures were presented in earlier papers [7], this text focusses on the architecture
of Geneva and its sub-libraries. Note that, in the following, the term “Geneva” may either refer
to the “Geneva library collection” or a sub-library thereof with the same name. Geneva started
as a single library of optimization algorithms. Over the course of Geneva’s now over 20 years of
development (under different names), a lot of functionality was outsourced to seperate libraries that
might be helpful for other use cases. For historic reasons, though, the Geneva library collection
and the Geneva optimization library still share the same name.

We will commence with a discussion of the overall architecture of Geneva, as it is the intention of
the authors to encourage users to explore other deployment scenarios of the (sub-)libraries.
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Figure 1: A summary of the modules contained in the Geneva library collection

2. Architecture and Ecosystem

In Geneva 1.6.1, all libraries are implemented according to the C++98-standard1. The only external
dependency is on the Boost library collection [2]2. Geneva runs on Unix(-like) systems, such as
Linux, BSD and MacOS/Darwin, with the g++ and clang++ compilers. An experimental port to
Microsoft Visual C++ exists. Apart from the standard x86-64 architecture, Geneva may also be
compiled on some ARM architectures under Linux. The library is designed as a toolkit, trying to
enable an as wide range of deployment scenarios as possible, giving users a lot of flexibility, but at
the price of additional work needed for integration on their side. The code is freely available under
an Open Source license [1] and may thus be extended or altered by users, subject to the terms and
conditions of the GNU Affero General Public License v3.
Geneva’s design makes no assumptions regarding the type of optimization problem other than
that evaluation function(s) might be computationally expensive. Hence, in the library code, fault
tolerance and code stability are rated higher than code efficiency (in the sense of execution times
of individual code segments, not efficiency of the optimization algorithms). If optimization runs
may optionally last for days, a crash inside of the Geneva code (as opposed to user-code in the
individuals) must be avoided wherever possible.
Individuals may be defined either as pure program code that is linked with the Geneva library and is
based on a class hierarchy provided for this purpose, or may optionally comprise external programs
(such as simulations) for the evaluation step. Apart from the eponymous evolutionary algorithms,
Geneva today also supports particle swarm optimization, simulated annealing, gradient descents
and parameter scans [3]. Further algorithms are planned. They have in common the need for the
evaluation of virtually independent candidate solutions in successive iterations. The library was

1The current trunk version [1] in the repository uses the C++11-standard.
2In the ongoing C++11-port of Geneva, these dependencies have been reduced.
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tested with up to 5000 parameters per individual, and allows floating point, boolean and integer
parameters3 for the problem description. A population may optionally consist of thousands of
individuals4. Figure 1 shows the overall architecture of Geneva, with its sub-libraries and their
corresponding roles:

• The Common-library holds functionality of a general nature that is needed by all parts of the
library collection. Of particular importance is an implementation of a thread-safe bounded
buffer (used e.g. in the creation of random number packages described in section 4 and in the
submission of work items discussed in section 3), a parser for C-style mathematical functions
used in constraint handling (compare section 5.1), and plot creation for the ROOT analysis
framework.

• Parallelization happens via the Courtier-library. The framework currently supports net-
worked execution through Boost.ASIO, multi-threaded execution on many-core systems via
Boost.Thread5, as well as an optional OpenCL backend for evaluation on GPGPUs. Courtier
does not depend on the “optimization” use-case and could be used in additional contexts. It
is implemented as a template library that makes some assumptions about the API of the work
items submitted through it, but apart from that has no knowledge about their nature.

• The Hap-library implements a random number factory that allows acyclic creation of random
numbers. These may be used by random number proxies in local clients to produce random
numbers of arbitrary distributions.

• The Geneva-library holds all functionality directly related to parametric optimization. Opti-
mization algorithms themselves only form a fraction of the code, though6. Geneva in addition
covers constraint handling and monitoring as important components. In a nutshell, the def-
inition of an optimization problem requires a specification of the parameter types together
with one or more associated figures of merit. Geneva also holds a rich collection of parame-
ter types, ranging from boolean over integer to floating point types. All of Geneva is based
on smart pointers7. Individuals are added to optimization algorithms through an interface
with a std::vector API, likewise parameters are added to individuals through the same API.
Apart from parameters, some algorithms, such as Evolutionary Algorithms and Simulated
Annealing, require “adaptors”. Geneva holds a rich collection of these.

• Last but not least there is test code, comprising both unit- and manual tests, many examples
and sample individuals for benchmarking, tests and illustration of common approaches for
the expression of an optimization problem. All properties of an optimization problem are
expressed through the individual – problem definition is indepdendent from the optimization
agorithm that modifies the parameters of individuals and calls their evaluation function(s).

3However, some algorithms, such as gradient methods, will only modify fitting parameter types.
4The number of individuals is fixed for some algorithms (e.g. gradient methods), but is free for others.
5This dependency will be replaced by std::thread as part of the C++11-port
6. . . which implies that implementing new algorithms is relatively easy – these may then use the entire infrastructure

provided by the Geneva library collection.
7boost::shared_ptr<> up until Geneva 1.6.1, std::shared_ptr<> thereafter
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Figure 2: Principles of the Courtier library

3. Parallelization

The most straight-forward approach to decrease execution times of parametric optimization runs
is to evaluate the individuals of a given iteration in parallel. Parallelization is in this case close to
the “embarrassingly parallel” type, as the evaluation of two individuals will usually not depend on
each other. Note, though, that successive iterations will usually depend on the results of previous
iterations. Where execution times of the evaluation step are sufficiently large, parallelization may
scale almost linearly even in distributed environments, such as clusters and Grid/Cloud, up to the
number of individuals in an iteration. Our tests have shown that, depending on the number of
parameters to be transferred, an evaluation time of a 4-5 seconds per individual will yield an almost
linear speedup [7].
The maximum theoretical speedup is often described through Amdahl’s law [9], in which the ratio
of execution times of parallelizable code compared to overall execution times in serial execution
plays an important role. In a nutshell, according to Amdahl8, if half of the execution time is
parallelizable up to the point where results are available instantaneously, the maximum speedup9

through parallelization will never be able to exceed a factor of 2. This fundamental rule has direct
consequences for the paraellization of Geneva. Our tests have shown that a significant portion of
the server-overhead stems from the (de-)serialization of candidate solutions.
Hence it becomes important for Geneva to not only support distributed execution but, whereever
possible, local parallelization (e.g. through multi-threading or the use of a GPGPU backend), so
that network communication and (de-)serialization is avoided. By the same token, for parallel
work-loads that are sufficiently “heavy” for networked execution, Geneva should be capable to

8Communication overhead is neglected here
9Note that there may also be quantization effects. In a nutshell, when executing 11 work items on 10 compute nodes,

the execution time can be twice as long as for 10 work items.
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support an as wide array of technologies as possible. This led to the broker architecture called
“Courtier” shown in figure 2. Geneva supports multiple, simultaneous optimization algorithms
that may concurrently submit individuals for evaluation to the Courtier library. Work items are
submitted to the “In-Buffer” of a an object called “buffer-port”. Each producer10 has its own buffer
port. The actual parallelization is implemented in pluggable modules called “consumer”.

In the simplest case of serial execition, a consumer will simply ask the broker for a single work
item. The broker will then query the available buffer ports in a round-robin fashion for work items,
until it finds one, and will hand it to the consumer. The consumer will then initiate processing of
the work item through a pre-defined API-call (which constitutes the only knowledge the consumer
has about the work item). Once processing is done, the result is returned to the broker, which uses
a unique id associated with the buffer port to sort the work item back into its “Out-Buffer”, from
where the original “producer” may take it for further processing. All interaction happens through
smart-pointers, so that no memory leaks occur during this process. Consumers may also choose
to perform processing in parallel instead, e.g. through local processing units (multiple CPU cores
or a GPU – provided the individual supports OpenCL). Depending on the consumer, it may also
respond to remote clients that ask the consumer for work.

Geneva currently has a serial consumer (mostly for debugging purposes), a multi-threaded con-
sumer, a consumer for networked execution through Boost.ASIO, as well as an optional OpenCL-
consumer. In the case of the network consumer, remote clients may be transmitted through means
of Grid- or Cloud-environments or even a batch submission system, and will work in a pull mode.
So remote clients will contact the server for work and will initiate return of results. Through this
setup networked Geneva-clients may reside in a private IP space, e.g. on some remote cluster. The
only system which needs to be constantly reachable is the server.

The only concession for this setup on the side of the optimization algorithms is fault-tolerance,
as it may not always be expected that all transmitted individuals actually return. So optimization
algorithms must be able to repair themselves, if not all work items have returned, and there must be
a timeout, after which work-items are considered to be “lost”11. The timeout is calculated on the
basis of average return times, so varying execution times due to compute units of different speed
and load are taken into account. Note, though, that this setup will not react well to vastly different,
unforseeable execution times on the client side. In this case the user has the option to completely
disable the timeout or to apply a factor to the timeout (which may happen through a configuration
file) to take into account the worst case.

In summary, all parallel execution is triggered by consumers. Producers do not initiate parallel
execution and do indeed not need to have any knowledge about the type of parallel execution that
was chosen by the user. The courtier library is also independent of the original optimization use-
case and may be used in other scenarios.

Current research on the Courtier library involves a “client-side” ping in order to influence the
time-out, as well as asynchronous transfer of individuals between client and server. In the latter
scenario, network transfers, including (de-)serialization, may happen while another individual is
being evaluated. This scenario may mask the time needed for data transfers entirely, provided that

10A “producer” equals an optimization algorithm in this context
11Geneva nevertheless tries to integrate “late” returns even after the timeout in most algorithms.
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Figure 3: The “raw” material for random numbers of different distributions is produced centrally, while
user-code sees a local random number generator.

evaluation times are long compared to the time needed for data transfers. The procedure also only
makes sense for sufficiently large numbers of work items, as otherwise some compute units will
consume more work items, and others might run empty. So if this facility does enter the Geneva
production code, it will be as a purely optional feature.

4. The Hap library

According to Amdahl’s law, it makes sense to reduce server-side execution times as much as possi-
ble, as only this may ensure a sufficient speedup. Some algorithms require vast amounts of random
numbers, and there are many objects interested in these. E.g. in an evolutionary algorithm with
a population size of 1000 and 5000 parameters per individual, 5 million objects per iteration will
require random numbers. Giving each of them their own random number generator is a nightmare,
particularly as in networked execution, individuals (including their parameter objects) are sent to
remote systems and may thus vanish entirely from the address space of the server, resulting in the
constant creation and destruction of random number gernerators. Seeding is just one big issue of
this scenario.
In order to avoid this, “raw” random numbers (evenly distributed floating point numbers in the
range [0,1[) are produced in a central random number factory (compare figure 3). Objects interested
in random numbers then employ a random number proxy that to them looks like a local generator.
Random number proxies are also accessible through thread-local storage, so objects can avoid to
store the proxies locally.
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Figure 4: Constraints of individual floating point values are modelled as a mapping from an internal to a
user-visible value. This allows to apply modifications of the core value to an unconstrained range, while
presenting a constrained value to the user.

When a proxy is first instantiated, it contacts the random number factory and obtains a buffer with
random numbers from it. Upon request from user-code, it may then produce random numbers
of various predefined distributions from the raw material (e.g. gaussian-distributed numbers for
evolutionary algorithms). Once the buffer has run empty, a new one is obtained from the factory.
Upon destruction of the proxy, partially used containers are returned to the factory and are filled up
with “fresh” numbers. They will then enter the cycle again.
Production of “raw” random numbers on the factory-side happens in multiple threads simultane-
ously. Fresh buffers are added to a thread-safe queue, until it is full. Threads will then block until
there is again space in the queue. This has the big advantage that most random numbers will be
produced while the host system is otherwise idle, which may particularly happen in the case of
networked execution. This way the time needed for the production of “raw” random numbers does
not affect the maximum speedup achievable by Geneva, as the numbers are produced while clients
work on the work items. And issues with thousands of random number generators can be totally
avoided.

5. Algorithm Efficiency

This section covers some of the ways in which the Geneva library tries to improve the efficiency
of the optimization process, in the sense of reducing the number of iterations and the size of the
populations, until a satisfactory optimum is found.

5.1 Constraint Handling

The size of the parameter space grows exponentially with the number of parameters. However, con-
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Figure 5: Evaluation workflow in the presence of potentially invalid solutions

straints may work into the opposite direction and reduce the size of the parameter space. Provided
that optimization algorithms spend most or all of their time in “valid” areas of parameter space, the
overall optimization procedure is sped up, as only few candidate solutions need to be rejected. Two
types of constraints are considered in Geneva:

• Constraints of the allowed value range of single parameters. E.g., a floating point parameter
might only be allowed to assume values in the range [0,1]. Geneva takes care of this situation
by transforming an unbounded “inner” parameter value to a bounded “outer” parameter value.
This way optimization algorithms do not need to be aware of the constraints of individual
parmeters, which greatly simplifies the task of adding new algorithms. See figure 4 for an
illustration of the procedure.

• Constraints may also involve two or more parameters. E.g., with two parameters x and y,
each with an allowed value range [0,C] (where C is a constant), a constraint of the form
x+ y <C will render half of the parameter space invalid.

The latter constraint-type (henceforth called “inter-parameter constraint”) is taken care of in the
following way:

• First an “invalidity” I is calculated for a given parameter set. Values of I in the range [0,1]
indicate that the parameter set is in a valid area of the parameter space. Values I > 1 indicate
an invalid parameter set. The deviation from 1 gives an indication of “how invalid” the
parameter set is. In the above example, (x+ y)/C could be used to specify the invalidity.

• Next, valid evaluations are transformed with a sigmoid function. For invalid parameter sets,
depending on whether Geneva is used to maximize or minimize, the upper or lower boundary
of the sigmoid function is multiplied with the invalidity.

• As a consequence, a joint quality surface is created for valid and invalid parameter sets. The
quality surface drops towards valid areas of the parameter space (in the case of minimization)
and will always have a worse value than valid solutions. Optimization algorithms are in this
way “drawn” towards valid areas of the parameter space, where they will spend most time.

• As a direct consequence, evaluaton functions will not be called for invalid parameter sets,
which might otherwise lead to bad results (crashes or incorrect evaluations).

9
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The procedure outlined abobe is used successfully in a use case involving the optimization of
exhaust systems with Geneva [5]. It is illustrated again in figure 5. Note that the step “perform real
evaluation” will involve the transformation with the sigmoid function. Geneva does support other
types of transformations, so figure 5 shows the general situation.

5.2 Meta-Optimization

Optimization algorithms will usually comprise a large number of configuration parameters. Choos-
ing the right configuration parameters can be very difficult, and performing optimization with sub-
optimal settings may lead to increased numbers of evaluations until a satisfactory optimum is found.
It is possible, however, to make the number of evaluations itself the figure of merit of an optimiza-
tion run. The task is then to optimize the configuration parametrs of a given optimization algorithm
in such a way that it converges as quickly as possible. Doing this can be difficult or impossible
for very long running evaluation functions, as many optimization runs have to be performed, be-
fore an optimal set of configration parameters is found. However, when it is possible to define a
mathematical function with similar complexity and geometry to the “real” evaluation function, one
might be able to use configuration parameters found for this replacement function instead. This is
not entirely satsifying, but likely still better than a free guess at the correct parameters.

5.3 Increasing the size of populations

Finally, in the beginning of an optimization run, it is usually very easy to find better solutions than
those the algorithm started with. For algorithms that do not need a fixed population size, it is then
often possible to start with a small population, which is then increased as it becomes more difficult
to find better solutions. This procedure reduces the number of overall evaluations and thus speeds
up the optimization run. Mapping a varying number of individuals to a constant number of compute
ressources may be difficult particularly in networked mode, though. Populations of varying sizes
are implemented e.g in Geneva’s Evolutionar Algorithm implementation.

6. Summary

Geneva allows to perform parametric optimization using a selection of different optimization al-
gorithms on devices ranging from many-core systems to clusters, Grid and Cloud. A plug-in
architecture was created that allows to easily add new means of parallelization. Optimization is
de-coupled almost entirely from parallelization, which simplifies the code and allows to make the
Geneva libraries more efficient and stable. Further measures help to reduce the overall number of
evaluations, making Geneva suitable for the deployment in particularly complex optimization prob-
lems. The authors welcome suggestions for further improvements and new deployment scenarios
beyond the current use-cases from the automotive industry and particle physics.
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