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This article shows the development of a diagnostic tool that implements a new kind of 

disruption predictor. The new disruption predictor neither depends on data from past discharges 

nor is based on threshold amplitude. It is based on detecting anomalies in the data flow. In JET, 

with only the locked mode signal, the new predictor outperforms existing predictors.  

First EPs Conference on Plasma Diagnostics - 1
st
 ECPD 

14-17 April 2015, 

Villa Mondragone , Frascati (Rome) Italy

                                                           
1
Speaker 

http://pos.sissa.it/


P
o
S
(
E
C
P
D
2
0
1
5
)
0
2
8

Advanced Disruption Predictor Based on the Locked Mode signal: Application to JET 

2 

1. Introduction 

When macroscopic instabilities start locking to the wall, the amplitude of the signal used 

to detect them (called locked mode) grows during the slowing down of their rotation. Therefore, 

the locked mode amplitude (http://users.euro-fusion.org/pages/mags/equilibrium/eq-coil-

loop/saddle-loop/saddle-loop.htm) is routinely used as precursor of disruptions caused by this 

locking of instabilities to the wall. However, predictors based on general machine learning 

methods (Support Vector Machines or Venn predictors among others) have shown better results 

(in terms of success rate and warning times) than simple predictions based on crossing a 

threshold of the locked mode amplitude. For example, in JET, the Advanced Predictor Of 

DISruptions (APODIS) outperforms the prediction capability of the locked mode predictor 

(LMP) based on a threshold criterion [1]. During the JET ITER-like wall (ILW) campaigns 

(September 2011 – October 2014), the APODIS success rate and average warning time are 

about 82% and 274 ms respectively. The equivalent quantities for the LMP are 67% and 255 ms. 

The reason for this difference is the exhaustive APODIS training process (almost 10000 

discharges of JET with C wall between April 2007 and October 2009). APODIS is in operation 

with the JET ILW and, so far, no re-training has been necessary. But collecting these huge 

training datasets is not a realistic strategy in the next generation of experiments such as ITER. 

Trying to avoid the use of huge amount of discharges in the training process, a recent 

alternative has been the development of disruption predictors from scratch [2, 3]. These are high 

learning rate predictors whose learning process starts with the first disruption. They are 

retrained after each missed alarm by adding disruptive and non-disruptive examples to the 

existing training dataset. In JET with the ILW, these adaptive predictors show success rates 

about 83% and average warning times of 244 ms. 

A more advanced option for disruption prediction would be the use of intelligent predictors 

that start their learning process with each new discharge and without the need of previous 

information from past discharges. This article describes a disruption predictor based on a locked 

mode signal that does not need previous shots for training purposes. The predictor is based on 

the automatic recognition of changes (anomaly detections) in data streams through the 

identification of outliers in the data flow. Due to this reason, the predictor is called Predictor 

Based on Outlier Detection (PBOD). In PBOD, the locked mode samples are processed in time 

windows 32 ms long and these values form the data flow to be sequentially analysed. Near a 

disruption, the data generating model changes as the data are streamed and this change is 

detected and used to trigger an alarm. 

Section 2 explains the concepts of anomaly detection applied to disruptions. Section 3 

describes the foundations of the new predictor and section 4 shows the results in JET. 

2. On-line learning and anomaly detection 

In an on-line data streaming setting, data are observed sequentially and a decision on the 

identification of any kind of change in the data has to be made ‘on-the-fly’. Any anomaly in the 

data may convey interesting time-dependent information about the data. Focusing the attention 

on disruption prediction, the anomaly detector system has to learn in each new discharge the 

evolution of a safe behaviour. It is important to note that the production of discharges under 

http://users.euro-fusion.org/pages/mags/equilibrium/eq-coil-loop/saddle-loop/saddle-loop.htm
http://users.euro-fusion.org/pages/mags/equilibrium/eq-coil-loop/saddle-loop/saddle-loop.htm


P
o
S
(
E
C
P
D
2
0
1
5
)
0
2
8

Advanced Disruption Predictor Based on the Locked Mode signal: Application to JET 

3 

different scenarios can generate different classes of non-disruptive plasmas. Therefore, in 

principle, the safe evolutions have to be learnt in every discharge. 

An essential point in the application of anomaly detection to recognize a forthcoming 

disruption is to be sure that the change in the data corresponds to the identification of a 

disruptive event. Otherwise, lots of false alarms would be triggered and the production of 

interesting plasma scenarios would be impossible. A single quantity closely related to 

disruptions is the locked mode amplitude. Therefore, in a first approach, this signal will be the 

only one used for the implementation of a disruption predictor based on anomaly detection. 

At this point, it is necessary to mention the requirements to be met by a disruption 

predictor based on anomaly detection. First, it is important to note that the sequential data are 

read only once. Second, the delay between a true alarm and its detection has to be minimal. 

Third, it should be noted that the number of both missed alarms and false alarms must be 

minimal. Last but not least, data streams should be handled efficiently from a computational 

point of view, which is crucial for the real-time implementation of the predictor. 

3. PBOD foundations 

There are two main factors in the development of the PBOD predictor: the disruption 

recognition criterion and the temporal resolution of the predictions. The first one is the key of 

the method to maintain low rates of false alarms, low rates of missed alarms, low rates of 

premature alarms (in JET, warning times greater than 1.5 s), low rates of tardy detections (in 

JET, warning times less than 10 ms) and high rates of valid alarms (in JET, warning times 

between 10 ms and 1.5 s). The second factor plays a central role to trigger an alarm as soon as 

possible and, therefore, to achieve the largest possible warning times. 

It should be noted that PBOD has to perform better than the standard predictor based only 

on triggering an alarm when the locked mode amplitude crosses a threshold. Following the 

experience for feature selection in [1, 2, 3], PBOD also uses time windows to extract relevant 

information for the predictor. The locked mode signal is sampled at 1 kSamples/s (same 

sampling rate than APODIS) and the basic time window is 32 ms long (again the same temporal 

length used in the APODIS windows). This means that there are 32 samples to process in every 

32 ms long time window. The information contained in these 32 samples is compressed into a 

reduced number of components by means of the Haar wavelet transform (approximation 

coefficients). The wavelet transform allows retaining both the time and the frequency 

information of the signal. Each decomposition level of the Haar transform reduces a factor of 2 

the number of points in the initial signal. Therefore, the application of the Haar transform at 

decomposition levels 1, 2, 3 and 4 compresses the information into 16, 8, 4 and 2 samples 

respectively.  

With regard to the temporal resolution, 32 ms is too long. A resolution of 2 ms is a 

reasonable choice. However, to avoid increasing the sampling rate, a window sliding 

mechanism is used. This means that after processing (Haar transform) the first time window 

(samples 1-32), the second time window is made up of samples 3-34, the third one contains the 

samples 5-36 and so on. In other words, every 2 ms, the latest 32 samples are processed with the 

Haar wavelet transform. 

Fig. 1(a) shows a scatterplot of the locked mode signal in the bi-dimensional space defined 

by the Haar transform at level 4 of decomposition. It corresponds to a non-disruptive discharge. 
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Points are plotted every 2 ms by applying the sliding window mechanism described above. The 

points in this bi-dimensional space show a compact cluster structure. Fig. 1(b) is the 

corresponding scatterplot of a disruptive shot. It is clear that the data points are grouped in the 

non-disruptive phase of the discharge but they start to be ‘far away’ from the cluster centre 

when the disruption is approaching. According to this, the red point is the first outlier in the data 

flow and its recognition determines when to trigger an alarm.  

 
Fig. 1: Scatterplots with same scales for a non-disruptive discharge and a disruptive one. The data 

dispersion is much larger close to a disruption. (a) Compact cluster. (b) The presence of outliers is related 

to a forthcoming disruption. 

 

As it has been pointed out, the red point in fig. 1(b) is the first point that is ‘far enough’ 

from the cluster centre. A simple inspection of fig. 1 shows a positive covariance in the data, 

which is the general trend in all JET discharges. Therefore, a Euclidean metric cannot be used to 

determine when a point is ‘outside’ the cluster. This is a consequence of the lack of circular 

symmetry in the cluster and its use would imply the triggering of lots of false alarms. Instead, 

the Mahalanobis metric does adjust for covariance according to the following equation: 

   2 1T

ij i j i j
D


   x x x x , where 

1
  is the population covariance matrix of the data matrix 

X . This means that typically, the isodistance contour with the Mahalanobis metric is not a circle 

but an ellipse (fig. 2). Therefore, this kind of distance results a proper option to identify outliers 

in the bi-dimensional space of fig. 1. 

 
Fig. 2: Simple example in a bi-dimensional space. The isodistance contours are ellipses. Therefore, the 

blue points have the same Mahalanobis distance to the centre. 

 

Fig. 3 shows the temporal evolution of the Mahalanobis distance of each new data point 

(with a temporal resolution of 2 ms) in relation to the cluster centre formed by all previous data 

points in the respective discharges. However, determining a threshold in the Mahalanobis 

distance to trigger an alarm can be dependent on the type of plasma scenario. Therefore, to 
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avoid this, the criterion to identify outliers at a time 
p

t  will be related to Mahalanobis distances 

greater than 
M

K  standard deviations from the baseline model of each discharge (fig. 3): 

 
    

  
.

Mahalanobis P Mahalanobis P

M

Mahalanobis P

D t mean D t t
K

std D t t

 



   (1) 

In this PBOD first version, 
M

K  has been set empirically to a value of 10, which provides 

slightly better results for JET. At present, it is unknown if this value will be the same for other 

tokamaks. On the other hand, it should be emphasized that research is needed to determine the 

value ‘on-the-fly’ in each discharge. 

 
Fig. 3: Temporal evolution of the Mahalanobis distance in safe and disruptive discharges. The large 

increase at the end of discharge 83175 identifies outliers. 

 

Fig. 4(a) shows the temporal evolution of both the locked mode signal (top plot) and the 

outlier factor from eq. (1) (bottom plot) for discharge 83175. PBOD triggers the alarm with 

greater warning time than both JET LMP and APODIS predictors. Fig. 4(b) is a different 

discharge in which the LMP predictor missed the alarm but PBOD recognizes the disruptive 

behaviour with a warning time of 166 ms. 

 
Fig. 4: Red plain lines: disruption times. Red dashed lines: APODIS prediction. Blue dashed lines: LMP 

predictions. Blue plain lines: PBOD predictions. 

4. Results 

PBOD has been applied in JET to all unintentional disruptions (566 discharges) and all 

non-disruptive discharges (1738) in the range 82460-87918 (ILW experimental campaigns). 

Table 1 shows the results. The first column represents the number of remaining components in 

each time window after applying the Haar wavelet transform. The other columns are the rates 
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that have been defined in section 3. Except in the case of compressing the information to 16 data 

points, all other predictors are quite similar and show very promising results. Our interpretation 

about the case of 16 points per window is the lack of enough compression in the feature space. 

 

Table 1: PBOD results with different data compression after the Haar transform 

Data 

compression 

False alarms 

(%) 

Missed 

alarms (%) 

Tardy detections 

(%) 

Valid alarms 

(%) 

Premature alarms 

(%) 

2 7.13 13.43 3.53 81.45 1.59 

4 7.31 11.48 3.36 83.22 1.94 

8 7.42 11.84 3.00 83.39 1.77 

16 +18 12.37 3.71 81.80 2.12 

 

Figure 5 summarizes and compares the results of LMP, APODIS and PBOD for the above 

set of discharges. The average warning times for the LMP, APODIS and PBOD predictors are 

255, 274 and 288 ms respectively. 

 
Fig. 5: Comparison between LMP, APODIS and PBOD. 
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