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For the first test operation of W7-X, only a limited set of seven diagnostics is considered to be 

mandatory. Among these are the Dispersion Interferometer for the electron density measurement 

and the ECE radiometer. Dispersion Interferometry using a 10.6 µm CO2-laser and its second 

harmonic with no need for a reference line is widely independent of mechanical vibrations and 

drifts and thus developed as a candidate for steady state density control. The 32-channel ECE 

radiometer probing the electron temperature profile using Gaussian optics and a single 

broadband mixer is dedicated to track ECRH heating and perform first transport studies. Three 

reflectometers are being prepared to use the first plasmas for their test operation namely a 

Doppler reflectometer with an optimized Gauss telescope optics, a Doppler reflectometer with a 

fast steering antenna with no movable in-vessel parts capable for a fast scan of the turbulence K-

spectrum, and a conventional correlation reflectometer probing the separatrix region.  
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1. Introduction 

For the superconducting stellarator Wendelstein 7-X (W7-X) at Greifswald, Germany [1], 

currently in its commissioning phase a pulse length of 30 min is planned at 8 MW ECR heating 

embedding high-power phases with 10s additional NBI of up to 10 MW. The first test operation 

phase, referred to as OP1.1 and scheduled late summer 2015 will have uncooled wall elements 

and instead of the later island divertor a plasma edge defined by 5 inertially cooled graphite 

inboard limiters to protect the already installed in-vessel components [2]. The integral heat input 

for this configuration is restricted to < 2 MJ for which more then 5 MW ECR heating are 
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available. Physics exploration of W7-X is planned to start about a year later with a fully cooled 

first wall and inertially cooled island divertor which allows about 10s operation at 8 MW ECRH 

for example. Full 30 min steady state discharges are subject of OP2 scheduled to start 2019 with 

the geometrically identical but water cooled cw-divertor. 

Diagnostic development for W7-X [3] is oriented along the planned physics program [4] 

with the particular challenges of long pulse operation: The expected cw heat load at diagnostic 

frontends is around 100 kW/m
2
 which requires active cooling. Steady state ECR heating at 140 

GHz results in a level of several ten kW/m
2
 of nearly isotropic microwave stray radiation in the 

torus in particular during high-density operation, where the absorption of the ECRH beams is 

moderate only [5].  

For microwave diagnostics W7-X, with a large major radius R=5.5m and rather large 

aspect ratio R/a~10, offers good conditions with well separated cyclotron resonances and the 

option of probing locations where the curvature of the flux surfaces is moderate only. 

Microwave diagnostics using in-vessel stainless steel optics and Cu waveguide components - 

the latter only if direct plasma radiation can be avoided - provide the possibility for operation 

with high heat- and particle loads even under steady-state and reactor relevant conditions. 

Sensitive microwave receivers can be installed outside the radiation shield, connected through 

oversized low-loss transmission lines of about 20 m length in order to allow accessibility during 

magnet operation. To protect them from ECRH stray radiation adapted filters must be installed. 

Only a limited set of seven diagnostics is considered to be mandatory for the first test 

operation of W7-X. Among these are the Dispersion Interferometer for the electron density 

measurement and the ECE radiometer. Several other diagnostics will use OP1.1 to prepare their 

operation at the beginning of the later physics program. Among these are three reflectometers 

located in the same port to allow for crosschecks: (1) A V-band Doppler reflectometer monitors 

edge density fluctuations and their poloidal propagation velocity. (2) An innovative fast steering 

Doppler reflectometry antenna is being prepared capable for a fast angular scan of the probing 

beam thereby scanning the K-spectrum of turbulence via the Bragg-condition and (3) a 

conventional 24-40 GHz poloidal correlation reflectometry plugin with 5 antennas characterizes 

density perturbations and their propagation near the separatrix.  

2. Dispersion Interferometry 

In W7-X a microwave interferometer would suffer from space restrictions which do not 

allow for large optics in opposite ports, as well as from densities in excess of 1·10
20

 m
-3

 and long 

path-lengths in the plasma resulting in beam refraction and subsequent multiple reflections at 

vessel walls. The latter perturb the phase measurement introducing spurious signal paths. 

Instead, Dispersion Interferometry (DI)
 
[6] based on a 10.6 µm CO2-laser ( P < 20 W ) and its 

second harmonic will be used for density control and later density profile measurements. DI 

employs frequency doubler crystals (here AgGaSe2 : conversion efficiency ~10
-6

) to create a 

second harmonic 5.3 µm reference signal  propagating along the same path such that a separate 

reference path is not required.  

In W7-X the 10µm/5µm beams of the single-channel CO2 DI interferometer are back-

reflected from a 50 mm diameter retroreflector outside the vessel thus passing the plasma twice. 

The sightline is shared with the Nd:YAG-laser for the Thomson scattering system to allow for 

cross-calibration. ZnSe and quartz windows have to be used respectively due to the different 
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wavelength which makes it necessary that the sightlines are slightly (~3deg) tilted with respect 

to each other with their crossing in the plasma. The retroreflector is fastened to the Thomson 

diagnostic support structure in the torus center, about 8m apart from the launching mirror. This 

long overall distance made it necessary to develop a feedback controlled beam steering system 

to cope with thermal drifts during long pulses.  

As the 10µm/5µm laser beams return from the plasma the 10.6 µm signal is also up-

converted in a second doubler crystal and the phase measurement is performed using the 5.3 µm 

signals. In order to separate launched and returning beams in the interferometer optics 

geometrically, both are 32mm parallel shifted with respect to each other by the retroreflector. 

For an DI arrangement variations of the geometrical path length cancel as they may result from 

vibrations - e.g. due to turbo pumps and water flow in cooling pipes - or from long-term thermal 

drifts. The resulting phase excursions thus display dispersion in the plasma only and therefore 

widely remain < 2 . For W7-X with a double-pass path-length in the plasma of 1.44 m in total a 

phase change of 2  corresponds to an average density of about 1.0 10
20

m
-3

. Phase ambiguities 

modulo  therefore can be avoided, tracking the phase over the whole discharge is not required 

and DI becomes an option for steady-state density control.  

Although it has been shown that DI is intrinsically insensitive versus vibrations along the 

sightline [7,8], vibrations perpendicular to the line-of sight may result in small phase 

perturbations as they modulate misalignment [9]. Therefore, the DI itself has been installed on a 

vertical, vibration isolated bench that consists of two granite plates held by a massive Al-

structure on a vibration isolated concrete base plate. The retroreflector opposite the plasma is 

itself fastened to a smaller vibration isolated stone plate to decouple it from device vibrations 

also. Phase measurement uses a heterodyne modulation scheme applying an elasto-optical ZnSe 

modulator at modulation frequency 50 kHz from a stabilized quartz oscillator which also 

determines the temporal resolution. The plasma induced phase shift is derived from the 

interference of the returning signals by direct digital sampling at 50 Ms/s  followed by digital 

filtering, down conversion and a phase comparison fitting the data and comparing it with the 50 

kHz modulation signal. This signal treatment is acieved by means of a Field Progammable Gate 

Array (FPGA) which provides data in real time.  

Comparison with an conventional 10µm/5µm (CO2/CO) two-color interferometer set-up 

using defined vibrations induced by piezos showed that with the DI arrangement the sensitivity 

versus vibration induced phase excursions is reduced by about an order of magnitude [9]. The 

residual phase excursions corresponding to density variations of a few times 10
17

 m
-3

 (over the 

total path length of 1.44 m in the plasma) mainly result from spurious modulation of the laser 

source induced by components of the returning beam. More relevant for the diagnostics 

characteristic are slow phase drifts (timescale several seconds) resulting in a baseline drift of the 

density by up to 1. 10
18

m
-3

 which are determined by air convection modulating the refraction 

index. Under laboratory conditions they are mainly due to temperature fluctuations which are 

driven, e.g. by the heating of optical components [9]. Therefore as further improvement the 

temperature of selected optical elements in the interferometer setup is actively controlled and for 

long-pulse operation the whole setup including the laser beam path outside the vessel can be 

operated under dry nitrogen atmosphere. 
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3. Electron Cyclotron Emission Diagnostics - ECE 

The ECE measures the 2
nd

 harmonic x-mode emission at 2.5 T operation by means of a 

heterodyne radiometer in the frequency band 126 GHz to 162 GHz. Due to the large aspect ratio 

the cyclotron harmonics are well separated in frequency and do not overlap. As required for 

ECE profile measurements the toroidal position has been selected such that the local stellarator 

magnetic field increases along the line-of sight tokomak-like towards the inner side of the torus. 

At the plasma axis the magnetic field differs from the 2.5 T in the ECRH launching plane, thus 

the central plasma temperature can be measured without being masked by the strong 140 GHz 

microwave stray radiation from the heating beams. The system will be fully operable for the 

first test plasmas to track the plasma evolution and measure the electron temperature profile, the 

latter provided that the plasma optical thickness is sufficient for an interpretation of the emission 

as blackbody radiation. Moreover, the ECRH power deposition profile and dynamic electron 

heat transport can be derived from heatwave analysis modulating the power of a gyrotron.  

 

Fig. 1: Poloidal cross section at the ECE observation with the Low-Field Side Gauss plugin and the small 

High Field Side horn antenna indicated. Mirrors M2 and M4 of the Gauss optics are focussing, M1 and 

M3 are required for beam folding only.  

Spatial resolution is maximized by minimizing the emitting volume for each frequency 

interval, i.e. a line-of-sight perpendicular to the flux surfaces and a slim Gaussian antenna 

characteristic focused at the plasma center with a 1/e beam  radius w0 remaining w0 < 23 mm all 

along the signal path through the plasma. The latter is achieved by intrinsically broadband 

Gaussian beam telescope optics, consisting of 2 elliptical and 2 plain stainless steel mirrors - the 

latter for beam folding and steering - and an adapted broadband horn antenna. This arrangement 

also keeps Cu components - microwave horn and fundamental mode waveguides - in the 

shadow of the mirrors far away from the plasma. For long-pulse operation the optics is prepared 

to be water cooled with cooling pipes integrated in the front mirrors. The vacuum barrier uses a 
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100 µm thick Viton-sealed mica sheet with 4 mm aperture as broadband vacuum window. A 28 

mm diameter oversized circular transmission line with overall length ~22m guides the 2 mm 

microwave radiation to the 32-channel ECE radiometer outside the experiment hall. In front of 

the radiometer the frequency band of stray radiation from the various gyrotrons (139.9 to 140.4 

GHz) is cut out of the spectrum by a waveguide Bragg reflection notch filter with depth >40 dB 

(this value being limited by the available measurement equipment) [10] showing steep edges 

and an insertion loss of only 4 to 7 dB outside this frequency band.  

The radiometer [11] uses a single broadband mixer for down conversion to an intermediate 

frequency range centred around 18 GHz and subsequent 2-18 GHz and 18-40 GHz filterbanks, 

16 channels each. The bandwidth of the individual filters (0.25-1.4 GHz) corresponding to a 

radial resolution between 0.5 to 1cm is adapted to the radial resolution of the ECE emission, as 

calculated from the optical depth at the expected plasma conditions [12]. For comparison the 

local plasma cross section along this sightline is ~50 cm, i.e the flux surfaces are compressed by 

about a factor of two with respect to a circular cross section with average minor radius a ~50cm. 

The detector diode output is launched and filtered via differential amplifiers to the DAQ with 

maximum 2 Ms/s which allows to study fast mesoscale events also.  

For higher spectral resolution a zoom IF-device [13] is available in parallel to the standard 

filterbank which allows the selection of any suitable frequency range of the spectrum by the aid 

of a tunable second local oscillator. In magnetic radial coordinates the selected frequency span 

of 4 GHz covered with 16 channels corresponds to a radial range of r~6cm at the High-Field 

Side (HFS) or ~15cm at the Low Field Side (LFS), respectively. This zoom device is 

particularly dedicated to perturbation experiments such as ELM studies or heatwave 

experiments from which the ECRH power deposition can be determined also.  

For an overall absolute calibration of the diagnostic a second identical Gaussian optical 

system is provided as a twin outside the torus including identical waveguide components, mica 

window and a geometrically identical transmission line, however with a hot-cold calibration 

source chopping between LN2 temperature and room temperature in front of it. Laboratory 

measurements with this arrangement showed that the two optics can be relative calibrated with 

an accuracy of about 5% provided spurious reflections in the transmission path are carefully 

avoided. 

A special feature of the ECE diagnostic is a second observation antenna with line-of-sight 

directed from the High-Field Side across the plasma towards the Gaussian optics enabling 

measurements of the emission from non-thermalized and current drive electrons at the same 

locations [14]. As for this wall location a heatload up to 400 kW/m
2
 is expected a stainless steel 

microwave horn with a 10mm aperture has been integrated in the high heatload graphite tiles 

and is thermally coupled to the water cooled CuCrZr heat sinks behind. The received microwave 

signals are guided to the next available port with rectangular overmoded waveguides in the 

shadow of the heat-shield. Outside the vessel this antenna is connected to the ECE radiometer 

via an oversized transmission line as well.  

4. Reflectometry 

During the first phase reflectometry measurements concentrate on the equatorial plane of 

the vertically elongated “bean shaped” poloidal cross section of W7-X where maximum 

turbulence amplitudes are expected from ballooning. The vertical plasma elongation resulting in 
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minimum curvature of the cut-off surfaces and the steep density gradients with well localized 

reflection expected from an extrapolation of W7-AS results are considered to yield very good 

conditions for reflectometry. Two Doppler reflectometry antenna plugins and a conventional 

correlation reflectometry plugin will share this 100cm×40cm aperture port which allows for 

cross calibration (Fig. 3). 

4.1 Doppler Reflectometry  

Doppler reflectometry monitors edge density fluctuations and their poloidal propagation 

velocity from intensity and Doppler shift of the backscattered signal. For first exploration of 

W7-X the design strategy aims on a versatile Gauss antenna with circular horn output that 

allows both x- and o-mode with an extremely broadband design covering both V-band and W-

band, 50-110 GHz. This gives access to the gradient region up to densities 1.5 10
20

 m
-3

. For 

Doppler reflectometry the line of sight is tilted with respect to the reflecting surface by 18
o
 by 

tilting the first mirror near the plasma poloidally. This selects turbulent structures with 

wavelength cmcm 15.0  via the Bragg condition
tiltwave sin2 .  

The optics is optimized to yield a maximum angular resolution as it is crucial to select the 

Doppler shifted backscattered signal from unshifted reflected signal components [15]. This is 

achieved by the plane wave fronts in the waist of a Gaussian beam which has a 1/e-folding 

width w0 optimized with respect to the finite curvature of the reflecting layer i.e. this probed 

spot varies w0~sqrt( ) with w0(80GHz)=2.4 cm at this specific location. The calculated spectral 

resolution of turbulent structures is K/K=0.2-0.14 depending on wavelength and configuration. 

Simultaneously an optics where the input waist varies ~sqrt( ) is intrinsically broadband as it 

has a constant Rayleigh-length. The optimized beam characteristics on the plasma side can be 

achieved with a suitable microwave horn and Gaussian transmission optics. However, the virtual 

beam waist within the horn inevitable shifts deeper into the horn for smaller wavelengths.  In the 

case of a classical Gauss telescope this shift is transferred quadratically with the telescope 

magnification to a shift of the waist towards the plasma edge. This is just the opposite of what is 

desired if a density profile is taken into account where the cut-off for higher frequencies/smaller 

wavelengths is always deeper in the plasma. The latter can be overcome with a Gauss telescope 

optics with an odd number of focusing mirrors where the spot is deeper in the plasma for 

smaller wavelength as requested. The quadratic shift of the waist in the plasma with wavelength, 

however, remains. Therefore, an additional request to the horn design was that the wavelength 

dependent shift of the virtual waist in the horn should be minimized. Finally, mode purity of the 

transmission optics is limited by the aperture available for the first two stainless steel mirrors 

within the port. This is, however, reasonably balanced by the fact that the Gauss optics acts as a 

mode filter for higher order modes and suppresses side lobes which is crucial for Doppler 

reflectometry. The realized optics (Fig. 2) consists of 3 focussing and 3 plane stainless steel 

mirrors - the latter for beam folding in the port - and an electro-formed broadband Gaussian Cu 

horn with a length of 300 mm. A second symmetrical optics views the same spot but with line of 

sight tilted by -18
o
, i.e. in the poloidally opposite direction. This yields a compensation for 

possible geometrical asymmetries in the tilt angle as both red and blue shifted signal 

components can be measured but also allows for later density profile measurement with a 

bistatic antenna at the same location. An alternative modification for OP1.2 are two different 
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values of tilt different angles which gives access to rapid changes in the turbulence K-spectrum 

by two Doppler reflectometry measurements simultaneously. 

 

 

Fig. 2: Schematic top view of the broadband Gauss optics with 3 elliptical mirrors plus 3 plane mirrors 

for beam folding. The cut-off layer is on the left side, the broadband horn on the right in analogy to the 

next photograph below. The design cut-off layer with a beam width of 100mm (left) is 450mm apart from 

the first focussing mirror. For the magnetic standard configuration of W7-X this layer will be 4 cm behind 

the separatrix at r/a=0.85. 

 

 

Fig. 3: Port closure with the plugins assembled for the Doppler reflectometry Gauss optics (towards the 

photographer) and for the conventional correlation reflectometry (lower rear, note the five microwave 

horns on the lower left side oriented towards the later plasma location). The plasma side of the plugins 

(left) will be slightly withdrawn with respect to the aperture of the port to the plasma vessel. The 

1000mmm x 400mm port vacuum barrier (right) is situated about 2m apart from the plasma resulting in 

the typical length of W7-X plugins of ~1.8m. The frame of the Gauss optics is prepared to carry a cooled 

heat shield on the plasma side which later closes the port during long-pulse operation thus shielding the 

finally 9 diagnostics which will be integrated to this particular plugin during long pulse operation. Note 

the already prepared daughter flanges at the vacuum closure. The first mirrors of the reflectometry Gaus 

optics are already withdrawn with respect to the front side of this frame. 
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Similar to ECE, the reflectometer transmitter will be outside the torus hall and connected 

by oversized circular transmission lines with single pass length ~27m. For start-up a V-band 

(50-75 GHz) hopping reflectometer [16] is prepared for first Doppler reflectometry studies in 

the density gradient region (3 to 7 10
19 

m
-3

). 

In addition, a novel fast steering Doppler reflectometry antenna has been developed, 

capable of a fast angular scanning the probing beam, thereby scanning the K-spectrum of 

turbulence via the Bragg-condition [17]. This allows simultaneous access to shear-flow and  K-

spectrum of turbulence, i.e. the two quantities considered to be relevant for L-H transition 

physics via shear-flow decorrelation. This antenna consist of two sectoral horns with 32 stacked 

H-plane elements each and a phased feed array which allows variation of the beam tilt angle 

between ±20 deg by small frequency scans f ~ 0.7 GHz around 15 frequencies in the W-band, 

which define the reflecting layers. The plugin measures in direct neighbourhood of the Gauss 

optics plugin, enabling crosschecks. 

4.2 Correlation Reflectometry 

A conventional Ka-band, 24-40 GHz, poloidal correlation reflectometry plugin with one 

launching and 4 receiving antennas has been installed (Fig. 3) for measurements around the 

separatrix (n < 2 10
19

m
-3

). It aims on characterization of density turbulence, edge mode activities 

and a measurement of the relatively low flow velocities in the velocity shear layer expected 

around the separatrix which can be derived via correlation techniques. This plugin is again 

attached to the same flange than the Doppler reflectometers, to allow for a cross-calibration of 

the measured propagation velocities.  

5. Further developments 

Planned developments for microwave and interferometer diagnostics are driven by 

technical challenges of the first experiment phases and the physics needs - namely the 

verification of the optimization criteria of an HELIAS type stellarator and the development of a 

high-density divertor-capable steady-state scenario with sufficiently low impurity confinement:  

A 10 channel DI is being prepared to track the density profile shape in the core and study 

the necessity and success of deep fuelling as it may become necessary in an ECH heated 

stellarator where hollow density profiles are predicted [18]. In the physics exploration phase 

OP1.2 as a first step starting with 4 interferometer channels only continuous tracking of the 

separatrix (upstream) density for divertor control and a second core-channel density 

measurement for redundancy are requested. The W7-X stellarator configuration does not allow 

for large opposite ports. Instead, high-heatload Molybdenum retroreflectors have been 

developed which will be incorporated in the tiles of the heatshield [19]. 

For the expected high-density scenarios, with densities beyond 1.2 10
20

 m
-3

 where 

conventional X2 ECE is in cut-off continuous core temperature measurements need to be 

developed. They may use either Electron Bernstein wave Emission (EBE) with mode-

conversion observation geometries [20] or apply higher harmonics of ECE. Moreover, for 

densities n < 1.2 10
20

 m
-3

 standard ECE is considered as an option to investigate fast mesoscale 

events and turbulence in the plasma core. 

Planned reflectometry extensions for OP1.2 include edge density profile measurements to 

track the upstream density and characterize the expected steep edge gradients. Conclusive 
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turbulence studies under 3D plasma conditions presumably need access to further different 

locations of the torus. As a first approach a second identical V-band Doppler reflectometer is 

planned with optics at a toroidally shifted probing position with different poloidal cross section 

which also enables the identification of large scale flow structures. 

The V-band Doppler reflectometer has received funding from the EUROfusion research and training 

programme 2014-2018.  
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