The Set of Diagnostics for the First Operation Campaign of the Wendelstein 7-X Stellarator

Ralf König*,1
E-mail: Ralf.Koenig@ipp.mpg.de

J. Baldzuhn1, W. Biel2, C. Biedermann1, H. S. Bosch1, S. Bozhenkov1, T. Bräuer1, B. Brotas de Carvalho3, R. Burhenn1, B. Buttenschön1, G. Cseh4, A. Czarnecka5, M. Endler6, V. Erckmann1, T. Estrada5, J. Geiger1, O. Grulke1, D. Hartmann1, D. Hatriamani1, M. Hirsch1, S. Jablonski5, M. Jakubowski1, J. Kaczmarczyk5, T. Klinger1, S. Klose1, G. Kocsis4, P. Kornejew1, A. Krämer-Flecken2, T. Kremeyer7, M. Krychowiak1, M. Kubkowska5, A. Langenberg1, H. P. Laqua1, M. Laux1, Y. Liang2, A. Lorenz1, A., O. Marchuk2, V. Moncada5, O. Neubauer2, U. Neuner1, J. W. Oosterbeek6, M. Otte1, N. Pablant10, E. Pasch1, T. S. Pedersen1, K. Rahbarnia1, L. Ryc5, O. Schmitz7, W. Schneider1, H. Schuhmacher11, B. Schweer2, T. Stange1, H. Thomesen1, J.-M. Traver1, S. Szepesi4, U. Wenzel1, A. Werner1, B. Wiegel11, T. Windisch1, R. Wolf1, G. A. Wurden12, D. Zhang1, A. Zimbal11, S. Zoletnik4 and the W7-X Team

1Max Planck Inst. for Plasma Physics,17491 Greifswald, Germany.
2Institute of Energy- and Climate Research, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
3Instituto de Plasmas e Fusao Nuclear Instituto Superior Tecnico, Lisbon, Portugal
4IFPiLM, Hery Street 23, 01-497 Warsaw, Poland
5Laboratorio Nacional de Fusión, CIEMAT, Avenida Complutense, Madrid, Spain
6Univ. of Wisconsin, Dept. of Engineering Physics, 1500 Engineering Drive, Madison, WI 53706
7CEA, IRFM, F-31308 Saint-Paul-lez-Durance, France
8Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
9Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
10Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
11Los Alamos National Laboratory, Los Alamos, NM 87544, USA

ABSTRACT: Wendelstein 7-X (W7-X) is a large optimized stellarator (B=2.5T, V=30m^3) aiming at demonstrating the reactor relevance of the optimized stellarators. In summer this year (2015) W7-X will begin its first operation phase (OP1.1) with five inertially cooled inboard limiters made of graphite. Assuming the heat loads can be spread out evenly between the limiters, 1 second discharges at 2 MW of heating power could be run in OP1.1. The diagnostics available for this first operation phase, including some special limiter diagnostics, and their capabilities are being presented.

This paper will be published in the special 1st ECPD issue of JINST.

First EPS Conference on Plasma Diagnostics - 1st ECPD
14-17 April 2015,
Villa Mondragone, Frascati (Rome) Italy

*Speaker