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proach by solving the relativistic transport equation. Thefirst order transport coefficients such as
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approximation and the second order transport coefficients namely the relaxation times of dissipa-

tive flows and the heat viscous coupling lengths have been estimated using the Grad’s 14-moment

method. The effects of the medium have been implemented through a temperature dependentππ
cross-section obtained by including one-loop self-energies in the propagators of the exchangedρ
andσ mesons. To account for early chemical freeze out in heavy ioncollisions, a temperature
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are found to affect the temperature dependence of the transport coefficients in a significant way.
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Transport properties in a thermal medium Sukanya Mitra

1. Introduction

The study of transport coefficients of hot hadronic matters has been attracting much interest
and attention in recent years. The experimentally measuredelliptic flow v2 of hadrons in Au+Au
collision at Relativistic Heavy Ion Collider (RHIC), can beinterpreted in terms of viscous hydro-
dynamics with a small value ofη/s, which is close to the quantum bound 1/4π [1], η ands being
the coefficient of shear viscosity and entropy density respectively. Such kind of results indicate the
strongly interacting nature of the matter created in heavy ion collisions. This interpretation based
on the measured elliptic flowv2 of hadrons in terms of viscous hydrodynamics however depends
sensitively on the value ofη/s. The behaviour ofη and the bulk viscous coefficientζ as a func-
tion of temperature is particularly relevant in the contextof non-ideal hydrodynamic simulations
of heavy ion collisions. A lot of interest has been generated, leading to quite a few estimates of the
transport coefficients of both partonic [2, 3] as well as hadronic [4, 5, 6, 7] constituents of strongly
interacting matter. The effects of heat flow in heavy ion collisions has received much less attention.
This is presumably on account of the fact that the net baryon number in the central rapidity region
at the RHIC and LHC is very small. However, at FAIR energies orin the low energy runs at RHIC
the baryon chemical potential is expected to be significant and heat conduction by baryons may
play a more important role. Based on such a scenario a few studies of heat conduction by pions
have been carried out. Using the experimentalππ cross-section the thermal conductivity of a pion
gas was estimated in [8, 4, 9] whereas in [10] a unitarized scattering amplitude was employed.

As already understood the created matter in heavy ion collisions undergoes dissipative pro-
cesses on its way to space time evolution and hence requires anon-ideal theory to describe its
kinematics. The first order theories of dissipative fluid dynamics that include the coefficients of
viscosity and thermal conductivity do not suffice this description since they face severe causality
violation problem. Hence we need a causal second order theory where the corresponding relax-
ation timesτ go as input in the viscous hydrodynamic equations [11, 12]. They indicate the time
taken by the fluxes to relax to their steady state values and consequently play an important role in
determining the space-time evolution of relativistic heavy ion collisions. The first order transport
coefficients go as inputs in these relaxation times. The temperature dependence of the relaxation
times have been estimated in [4, 9, 8] with a parameterized cross section which is independent
of temperature. Constant values of transport coefficients have been used in [11] and in [13] these
quantities have been evaluated using conformal quantum field theory for a strongly coupled system.

In the kinetic theory approach the dynamics of interaction resides in the differential cross-
section which goes as an input in the expressions of all thesetransport coefficients. In almost all
estimations of the transport coefficients a vacuum cross-section was employed. In this work we
consider a medium dependent interaction cross section evaluated at finite temperature to estimate
first the viscosities and thermal conductivity and use them to study the temperature dependence of
the relaxation times of the dissipative flows.

2. First order transport coefficients in Chapman-Enskog method

The evolution of the phase space distribution of the pions isgoverned by the equation

pµ∂µ f (x, p) =C[ f ] (2.1)
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whereC[ f ] is the collision integral. For binary elastic collisionsp+k → p′+k′ which we consider,
this is given by [9]

C[ f ] =
∫

dΓk dΓp′ dΓk′ [ f (x, p′) f (x,k′){1+ f (x, p)}{1+ f (x,k)}

− f (x, p) f (x,k){1+ f (x, p′)}{1+ f (x,k′)}] W , (2.2)

where the interaction rate,W = s
2

dσ
dΩ(2π)6δ 4(p+ k − p′ − k′) anddΓq = d3q

(2π)3q0
. The 1/2 fac-

tor comes from the indistinguishability of the initial state pions. For small deviation from local
equilibrium we write, in the first Chapman-Enskog approximation

f (x, p) = f (0)(x, p)+δ f (x, p), δ f (x, p) = f (0)(x, p)[1+ f (0)(x, p)]φ(x, p) , (2.3)

where the equilibrium distribution function is given byf (0)(x, p) =

[

e
pµ uµ (x)−µ(x)

T (x) −1

]−1

, with T (x),

uµ (x) and µ(x) representing the local temperature, flow velocity and chemical potential respec-
tively. Putting (2.3) in (2.1) the deviation functionφ(x, p) is seen to satisfy

pµ∂µ f (0)(x, p) =−L [φ ] , (2.4)

where the linearized collision term

L [φ ] = f (0)(x, p)
∫

dΓk dΓp′ dΓk′ f (0)(x,k){1+ f (0)(x, p′)}{1+ f (0)(x,k′)}

[φ(x, p)+φ(x,k)−φ(x, p′)−φ(x,k′)] W . (2.5)

Using the form of f (0)(x, p) as given above on the left side of (2.4) and eliminating time
derivatives with the help of equilibrium thermodynamic laws we arrive at,

[Q∂νuν + pµ∇µν(pσ uσ +mπh)(T−1∂ν T +Duν)−〈pµ pν〉〈∂ µuν〉] f (0)(1+ f (0)) =−TL [φ ] .
(2.6)

In this equationQ = −1
3m2 +(pµ uµ)2{4

3 − γ ′
}+ {(γ ′′

− 1)mh− γ ′′′
T}pµuµ , and〈∇µUν〉 =

1
2[∇

µUν +∇νU µ − 2
3∆µν∇σUσ ]. To be a solution,φ must be a linear combination of the thermo-

dynamic forces appearing on the left hand side of the transport equation as the following

φ = A∂νuν +Bµ∇µν(T−1∂νT −Duν)−Cµν〈∂ µ uν〉 , (2.7)

which on substituting on the right hand side of (2.6) we obtain a set of three integral equation
satisfied by the coefficients,A,Bµ ,Cµν

L [A] =−Q f (0)(p){1+ f (0)(p)}/T ,

L [Bµ ] =−∆µσ pσ (p.u−h) f 0)(p){1+ f (0)(p)}/T ,

L [Cµν ] =−〈pµ pν〉 f (0)(p){1+ f (0)(p)}/T .

(2.8)

Here,Cµν =C〈pµ pν〉 andBµ = B∆µν pµ . The other details are discussed in [14, 15, 16].
In an imperfect fluid, the dissipative part of the energy momentum stress tensor is [17],

3
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∆T µν = 2η〈∂ µuν〉+ζ∆µν∂σ uσ +λ{∆µαUν +∆ναUν}(∂α T −Tu.∂uα) (2.9)

The first two terms corresponds to the viscous effects while the last term indicates thermal dissipa-
tion. The dissipative part of heat flow or the energy 4-flow is related to thermal conductivity by the
following equation, [18],

∆Iµ = λ∆µα(∂α T −Tu.∂uα) (2.10)

Again these quantities can be expressed in integral forms over the particle distribution function as,

∆T µν =

∫

dΓp f (0)(1+ f (0))Cµν〈pµ pν〉〈∂ µuν〉+

∫

dΓp f (0)(1+ f (0))QA∆µν∂σ uσ (2.11)

∆Iµ =

∫

d3p
(2π)3p0(p.U −h)pσ ∆µ

σ f0{1+ f0} (2.12)

Comparing, we obtain the expressions of transport coefficients,

ζ =−
∫

d3p
(2π)3p0QA f0(1+ f0)

λ =
1

3T

∫

d3p
(2π)3p0Bν pν(p.u−h) f0(1+ f0)

η =−
1
10

∫

d3p
(2π)3p0 f0(1+ f0)C〈pα pβ 〉〈pα pβ 〉 (2.13)

Here we follow the procedure outlined in [9] in which A,Bµ ,Cµν is expanded in terms of
orthogonal Laguerre polynomials of half integral order. After some simplifications (discussed in
detail in Refs. [15]) the first approximation to transport coefficients comes out to be,

ζ = T
α2

2

a22
, λ =−

T
3m

β 2
1

b11
, η =

T
10

γ2
0

c00
. (2.14)

wherea22,b11 andc00 can be expressed in terms of the integralXα(z) as

a22 = z2X3(z) (2.15)

b11 =−z[X2(z)+X3(z)] (2.16)

and

c00 = 2[X1(z)+X2(z)+
1
3

X3(z)] (2.17)

where

Xα(z) =
8z4

[S1
2(z)]

2
e(−2µ/T )

∫ ∞

0
dψ cosh3ψ sinh7ψ

∫ π

0
dΘsinΘ

1
2

dσ
dΩ

(ψ ,Θ)
∫ 2π

0
dφ

∫ ∞

0
dχ sinh2α χ

∫ π

0
dθ sinθ

e2zcoshψ coshχ

(eE −1)(eF −1)(eG −1)(eH −1)
Mα(θ ,Θ) (2.18)

4
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with

E = z(coshψ coshχ −sinhψ sinhχ cosθ)−µ/T

F = z(coshψ coshχ −sinhψ sinhχ cosθ ′)−µ/T

G = E +2zsinhψ sinhχ cosθ
H = F +2zsinhψ sinhχ cosθ ′ . (2.19)

The functionsMα stand for

M1(θ ,Θ) = 1−cos2 Θ ,

M2(θ ,Θ) = cos2θ +cos2 θ ′−2cosθ cosθ ′ cosΘ ,

M3(θ ,Θ) = [cos2 θ −cos2 θ ′]2 (2.20)

and
cosθ ′ = cosθ cosΘ−sinθ sinΘcosφ . (2.21)

The quantitiesα2, β1 andγ0 are discussed in next section.

3. Second order transport coefficients in Grad’s 14 moment method

The basic idea of the moment method is to obtain an approximate solution of the transport
equation (2.1) by expanding the distribution functionf (x, p) in momentum space around its local
equilibrium value when the deviation from it is small. We write

f (x, p) = f (0)(x, p)+δ f (x, p), δ f (x, p) = f (0)(x, p)[1+ f (0)(x, p)]φ(x, p) (3.1)

where the equilibrium distribution function is as before for a bosonic system withφ is a quantity
which amounts the deviation.

Putting (3.1) in (2.1) the left hand side of the later splits into a term containing derivative over
the equilibrium distribution and another containing derivative overφ ,

pµ∂ µ f0+ f0(1+ f0)pµ∂ µφ =−L [φ ], (3.2)

which after some simplification reduces to

Πµ∂µ f0 = f0(1+ f0)

×

[

(τ − ĥ)Πα
∇α T

T
+

1
T n

Πα∇α P−〈ΠµΠν〉〈∇µuν〉+ Q̂∇µuµ − τΠµDuµ

+ τ [{τ(1− γ ′)+ (γ ′′−1)ĥ− γ ′′′}
δ
P

∇α Iα
q −

δ ′

nT
∇α Iα

q ]

]

, (3.3)

with Πµ = pµ/T , τ = p · u/T andQ̂ = Q/T 2, where,Q = −1
3m2

π +(p · u)2{4
3 − γ ′}+ p · u{(γ ′′−

1)h− γ ′′′T}. The reduced enthalpy per particle is defined as,ĥ = h/T andP andIµ
q stand for the

pressure and heat flow vector respectively. Theγ ’s andδ ’s are mentioned in details in [19].

5
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For the remaining two terms in (3.2) we need to define the deviation functionφ and its deriva-
tive. Since the distribution function is a scalar dependingon the particle momentumpµ and the
space-time coordinatexµ , the deviation function is expressed as a sum of scalar products of tensors
formed frompµ and tensor functions ofxµ . In terms of irreducible tensorsφ is written as

φ(x, p) = A(x,τ)−Bµ(x,τ)〈Πµ 〉+Cµν(x,τ)〈Πµ Πν〉. (3.4)

The notation〈〉 denotes the irreducible tensors defined as〈Πµ〉=∆µνΠν and〈ΠµΠν〉≡ [1
2(∆

µα∆νβ +

∆να∆µβ )− 1
3∆µν∆αβ ]Πα Πβ .

Now the x and τ-dependent coefficient functionsA, Bµ andCµν are further expanded in a
power series inτ such that the last power is the one which gives a non-zero contribution to the
collision term,

A(x,τ) = A0+A1(x)τ +A2(x)τ2 =
2

∑
s=0

As(x)τ s, (3.5)

Bµ(x,τ) = B0µ(x)+B1τ(x)τ =
1

∑
s=0

(Bs)µ(x)τ s, (3.6)

Cµν(x,τ) = (C0)µν(x). (3.7)

This leaves us with sixx-dependent coefficientsA0, A1, A2, B0µ , B1µ andC0µν . It is convenient to
express them in terms of the thermodynamic fluxes (irreducible flows) in the following way,

A2 =
Π

nT α2
(3.8)

A1 =
(a1a4−a2a3)

(a2
2−a1a3)

Π
nT α2

(3.9)

A0 =
(a2a4−a2

3)

(a1a3−a2
2)

Π
nT α2

(3.10)

B1ν =
Iµ
q ∆µν

nT β1
(3.11)

B0ν =
Iµ
q ∆µν

nT β1
(−

b1

b0
) (3.12)

〈(C0)
µν〉= −

5
ργ0

〈Πµν〉 , (3.13)

whereΠ and 〈Πµν〉 are bulk and shear viscous fluxes respectively. The details can be found in
[19]. Defining all the space-time dependent coefficients of equation (3.4) in terms of the known
functions it is now possible to specify the deviation function φ completely. Knowingφ , we now
go back and use it in the Boltzmann equation (3.2) to evaluatethe equations of motion for the
dissipative fluxes.

3.1 Bulk viscous pressure equation

Taking inner product of both sides of equation (3.2) withτ2 and applying the (inner product)
properties of irreducible tensors [18] we obtain the equation of motion for bulk viscous pressure

6
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equation,

Π = ζ [∇µuµ−
1

n2α2
2

{
a2

3−2a2a3a4+a1a2
4

a2
2−a1a3

+a5}DΠ

−
1

n2α2
{

3
β1

(
b1b2

b0
−b3)+ (1− γ ′)δ (

S1
2

S2
2

)a4

+ {(ĥ(γ ′′−1)− γ ′′′)δ (
S1

2

S2
2

)−δ ′}a3}∇µ Iµ
q ] . (3.14)

Retaining only the first term on the right hand side of (3.14) the equation for the bulk viscous
pressure reduces to the same in the first order theory of dissipative fluids with the coefficient of
this term as the bulk viscous coefficientζ . Equation (3.14) is indeed hyperbolic and contains a
time derivative of the bulk viscous pressure. This yields a relaxation time for bulk viscous pressure
given by,

τζ = ζ
1

n2α2
2

[
a2

3−2a2a3a4+a1a2
4

a2
2−a1a3

+a5], (3.15)

with

a1 =
n
T
{

S0
2

S1
2

},

a2 =
n
T
{z

S0
3

S1
2

−1},

a3 =
n
T

z2{
S0

2

S1
2

+3z−1S1
3

S1
2

},

a4 =
n
T

z3{15z−2 S2
3

S1
2

+2z−1+
S0

3

S1
2

},

a5 =
n
T

z4[6z−1{
S1

3

S1
2

+15z−2S3
3

S1
2

}+{
S0

2

S1
2

+15z−2 s2
2

S1
2

}]. (3.16)

α2 = z3[
1
3
(
S0

3

S1
2

− z−1)+ (
S0

2

S1
2

+
3
z

S1
3

S1
2

){(1− γ ′′)
S1

3

S1
2

+ γ ′′′z−1)}− (
4
3
− γ ′){

S0
3

S1
2

+15z−2 S2
3

S1
2

+2z−1}].(3.17)

The termsSα
n are defined asSα

n (z) =
∞

∑
k=1

ekµ/T k−αKn(kz), Kn(x) denoting the modified Bessel

function of ordern with z = mπ/T .

3.2 Heat flow equation

In this case we take the inner product of both sides of equation (3.2) with〈Πµ〉τ . Following
similar techniques as above we get the equation for heat flow,

Iµ
q = T λ [{

∇µT
T

−
∇µP
nh

}−
1

nT
{β ′′DIµ

q + γ ′′∇ν〈Πµν〉+α ′′∇µΠ}], (3.18)

with

7
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β ′′ = −
1
β1

{
9T
nβ1

(b3−
b1b2

b0
)−

3T
n

b2

ĥ
}, (3.19)

γ ′′ =
1
β1

{
γ1

γ0)
+

3T
n

b2

ĥ
}, (3.20)

α ′′ =
3T
n

1
β1

[
1

α2
{b1

a2a4−a2
3

a1a3−a2
2

+b2
a1a4−a2a3

a2
2−a1a3

+b3}+
b2

ĥ
]. (3.21)

So from the above equation the relaxation time for heat flow isgiven by,

τλ = λT
1

nT
β ′′, (3.22)

with

b0 =−
n
T
,

b1 =−
n
T

z
S1

3

S1
2

,

b2 =−
n
T
{5z

S2
3

s1
2

+ z2},

b3 =−
n
T
{30z

S3
3

S1
2

+5z2S2
2

S1
2

+ z3S1
3

S1
2

}. (3.23)

β1 = 3z2[1+5z−1 s2
3

S1
2

− (
S1

3

S1
2

)2]. (3.24)

3.3 Shear viscous pressure equation

Multiplying both sides of equation (3.2) with〈Πµν〉 we applying the inner product properties
of irreducible tensors as before. This produces the equation of motion for shear viscous pressure
given by,

〈Πµν〉= η [2〈∇µuν〉−
1

nT
{γ ′′′D〈Πµν〉−β ′′′∇µIν

q }], (3.25)

with

γ ′′′ =
z2[

S2
2

S1
2
+6z−1 S3

3
S1

2
]

[z
S2

3
S1

2
]2

, (3.26)

β ′′′ =
6
β1

[ĥ− (6
S3

3

S2
3

+ s
S2

2

S2
3

)]. (3.27)

The coefficient of shear viscosity can be followed from the first term of the right hand side of eqn.
(3.25) with,

γ0 =−10
S2

3

S1
2

. (3.28)

8
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From (3.25) the relaxation time for shear viscous pressure is obtained as,

τη = η
1

nT
γ ′′′. (3.29)

4. The in-mediumππ cross-section

= + +

π

h

π

π

π

π

ρ, σ ρ, σ

Figure 1: π −π scattering with self-energy corrections

The ππ cross-section is the key dynamical input for the evaluationof transport coefficients
mentioned in earlier sections. Here the scattering is assumed to proceed viaσ andρ meson ex-
change within the thermal medium. From the effective interaction [20]

L = gρ~ρ µ ·~π ×∂µ~π +
1
2

gσ mσ~π ·~πσ (4.1)

the matrix elements forππ scattering are given by the following expressions where thewidths
of the σ and ρ mesons have been introduced in the propagators involved in the corresponding
s-channel processes. We thus have

MI=0 = 2g2
ρ

[

s−u
t −m2

ρ
+

s− t
u−m2

ρ

]

+ g2
σ m2

σ

[

3
s−m2

σ + imσ Γσ
+

1
t −m2

σ
+

1
u−m2

σ

]

MI=1 = g2
ρ

[

2(t −u)
s−m2

ρ + imρΓρ
+

t − s
u−m2

ρ
−

u− s
t −m2

ρ

]

+ g2
σ m2

σ

[

1
t −m2

σ
−

1
u−m2

σ

]

. (4.2)

Defining the isospin averaged amplitude as|M |2 = 1
9 ∑I |MI |

2 and ignoring the non-resonant
I =2 contribution, the cross-section is found to agree very well with the estimate based on measured
phase-shifts given in [4]. In this way it is ensured that the dynamical model is normalized against
experimental data.

To obtain the in-medium cross-section we replace the vacuumwidth in the above expressions
by the ones in the medium as indicated in fig.1. The width is related to the imaginary part of the
self-energy through the relation [21]

Γ(T,M) =−MImΠ(T,M) (4.3)

9
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whereΠ denotes the one-loop self energy diagrams shown in fig. 1 and are evaluated using the
real-time formalism of thermal field theory. Theσ meson self-energy is obtained from theππ
loop diagram whereas in case of theρ meson theππ, πω , πh1, πa1 graphs are evaluated using
interactions from chiral perturbation theory [22]. The longitudinal and transverse parts of theρ
self-energy are defined in terms ofΠµ

µ as [23]

ΠT =−
1
2
(Πµ

µ +
q2

q̄2 Π00), ΠL =
1
q̄2 Π00, Π00 ≡ uµuν Πµν . (4.4)

The momentum dependence being weak [23] we take an average over the polarizations,

Π =
1
3
[2ΠT +ΠL] . (4.5)

The imaginary part of the self-energy obtained by evaluating the loop diagrams is given by [24]

ImΠ(q0,~q) =−π
∫

d3k
(2π)34ωπωh

×

[

N1{(1− f (0)(ωπ)− f (0)(ωh))δ (q0−ωπ −ωh)

+( f (0)(ωπ)− f (0)(ωh))δ (q0−ωπ +ωh)}+

N2{( f (0)(ωh)− f (0)(ωπ))δ (q0+ωπ −ωh)

−(1− f (0)(ωπ)− f (0)(ωh))δ (q0+ωπ +ωh)}
]

(4.6)

where f (0)(ω) = 1
e(ω−µπ )/T−1

is the Bose distribution function with argumentsωπ =

√

~k2+m2
π and

ωh =
√

(~q−~k)2+m2
h. The termsN1 andN2 stem from the vertex factors and the numerators of

vector propagators, details of which can be found in [24]. The angular integration is done using the
δ -functions which define the kinematic domains for occurrence of scattering and decay processes
which lead to loss or gain ofρ (or σ ) mesons in the medium. To account for the substantial 3π and
ρπ branching ratios of the heavy particles in the loop the self-energy function is convoluted with
their widths,

Π(q,mh) =
1

Nh

∫ (mh+2Γh)
2

(mh−2Γh)2
dM2 ×

1
π

Im

[

1

M2−m2
h + iMΓh(M)

]

Π(q,M) (4.7)

with

Nh =

∫ (mh+2Γh)
2

(mh−2Γh)2
dM2 ×

1
π

Im

[

1

M2−m2
h + iMΓh(M)

]

. (4.8)

The contribution from the loops with these unstable particles can thus be looked upon as multi-pion
effects inππ scattering.
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Figure 2: Theππ cross-section as a function of centre of mass energy. The dashed and solid lines respec-
tively indicate the cross-section obtained using the vacuum and in-medium widths of theρ andσ mesons.

It is well known that hadrons undergo chemical freeze-out quite early at a temperature close
to the crossover temperatureT ∼ 170 MeV [25]. The number-changing inelastic collisions cease
at this point and a chemical potential gradually builds up with decreasing temperature until kinetic
freeze-out [26] which we take to be∼ 100 MeV. Here the temperature-dependent pion chemical
potential is taken from Ref. [27] which is parameterized as

µπ(T ) = a+bT + cT 2+dT 3 (4.9)

with a = 0.824,b = 3.04,c =−0.028,d = 6.05×10−5 andT , µπ in MeV.

We now plot in fig. 2 the totalππ cross-section defined byσ(s) = 1
2

∫

dΩ dσ
dΩ with dσ

dΩ = |M |2

64π2s .
The increase in the widths of the exchangedρ andσ on account of thermal emission and absorption
is reflected in a significant change in both the magnitude and shape of the cross-section as a function
of the c.m. energy.

5. Results

In result section let us start with the results of shear viscosity to entropy density ratioη/s. In
Fig. (3) for µπ = 0 the upper set of curves with filled circles show the usual decreasing trend as
seen, for example in [7]. This trend is reversed whenµπ(T ) is used andη/s increases withT . The
values in all cases remain well above 1/4π. In the two set of curves the distinctly separated three
curves with vacuum and in medium cross sections respectively exhibit the effect of the thermal
medium on the shear viscosity discussed so far. The curves with thermalρ propagator including
heavy meson loops show a larger enhancement indicating a greater effect of medium on the shear
viscosity at finite temperature.

Then we have the results for bulk viscosityζ as a function of temperatureT . In Fig. (4)
the three sets of curves correspond to different values of the pion chemical potential. The clear
separation between the curves in each set displays a significant effect brought about by the medium
dependence of the cross-section. A large dependence on the pion chemical potential is also inferred
since the three sets of curves appear nicely separated.
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Figure 3: η/s as a function ofT .
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Figure 4: ζ as a function ofT . In each set the solid line indicates vacuum cross-section,the dotted line for
in-medium modification due to pion loop and the dashed line for loops with heavy mesons.

We next turn to the results of thermal conductivity. In fig. (5) we plot λT as a function ofT
evaluated in the Chapman-Enskog approach. The effect of a hot medium as well as temperature
dependent chemical potential is clearly visible for those plots.

We now present the results of numerical evaluation of the relaxation times. We start withτζ ,
as a function of temperature. In Fig. (6) the upper set of curves merges the lower one at 100MeV
representing the point of kinetic freeze-out indicating that µπ(T ) interpolates between the points
representing chemical and kinetic freezeouts. In each set the τζ shows a decreasing trend with
temperature which is in accordance with [4]. The three different curves in each set show the effect
of the medium on account of theππ cross section. These curves with medium cross sections appear
to be enhanced with respect to the vacuum ones indicating theeffect of a thermal medium onτζ .

Next we plot theτλ against temperature for the same two different values of pion chemical
potentials mentioned above. We notice that the medium modified cross sections evaluated at finite

12
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Figure 5: λ T as a function ofT for ππ cross-section in vacuum and in medium.
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Figure 6: Relaxation time of bulk viscous pressure as a function ofT for differentππ cross-section with
temperature dependent pion chemical potential.

temperature influence the temperature dependence ofτλ which appear to be more enhanced for
heavier mesons in theρ propagator than theππ loop only. In Fig. (7) the nicely separated three
curves in each set reveal the effects of medium on the temperature dependence ofτλ .

Finally we present our result ofτη , i.e, the relaxation time of the shear viscous flow for a
medium inducedππ cross section. In each set two different values of chemical potential demon-
strates the effect ofµπ on the values ofτη . Moreover the effect of medium is shown by the en-
hancement of the curves which appears to be more significant for multipion case thanππ loop. In
all the three cases (τζ ,τλ andτη ) the effect of medium on relaxation times increases with increasing
temperature.

6. Discussions

In this work the main focus was to emphasize the role of mediummodifications of the cross-
section in the evaluation of the transport coefficients. Thetransport coefficients and their temper-
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Figure 7: Relaxation time of heat flow as a function ofT for differentππ cross-section with temperature
dependent pion chemical potential.
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Figure 8: Relaxation time of shear viscous pressure as a function ofT for differentππ cross-section with
temperature dependent pion chemical potential.

ature dependence could affect the quantitative estimates of signals of heavy ion collisions particu-
larly where hydrodynamic simulations are involved. For example, it has been argued in [28] that
corrections to the freeze-out distribution due to bulk viscosity can be significant. As a result the
hydrodynamic description of thepT spectra and elliptic flow of hadrons could be improved by in-
cluding a realistic temperature dependence of the transport coefficients. So a realistic evaluation of
these quantities is essential to obtain the proper temperature profile and consequently the cooling
laws of the evolving system. In addition it is found that the relaxation times of the bulk viscous
flow and the heat flow to be of similar magnitude to that of the shear viscous flow which suggests
that they should all be taken into consideration in dissipative hydrodynamic simulations.
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