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The QCD equation of state is necessary for modelling the hydrodynamical expansion of the quark-
gluon plasma created in a heavy-ion collision. Here we present preliminary results for a finite-
density equation of state that should be useful in the context of the Beam Energy Scan program at
RHIC. We Taylor-expand the partition function and calculate all the coefficients upto sixth order
in the quark chemical potentials. By comparing our second, fourth and sixth order expansions for
different values of µB where µB is the baryon chemical potential, we conclude that our fourth-
order equation of state should be valid upto µB/T ∼ 2 or equivalently, down to RHIC beam
energies of approximately 20 GeV.
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1. Introduction

With the advent of the Beam Energy Scan (BES) program at RHIC, attention has turned to-
wards the finite-µB region of the QCD phase diagram. In this connection there are questions which
can only be answered through ab initio QCD calculations, such as the location of the conjectured
critical point or the equation of state at finite density. Unfortunately lattice QCD, which is the only
known technique to extract predictions directly from QCD in its non-perturbative regime, suffers
from the infamous sign problem at µB 6= 01. As of today, no complete solution to this problem
is known. Nevertheless, several partial solutions, such as reweighting, Taylor expansion, analytic
continuation, etc. exist, among which the method of Taylor expansions [1, 2] is perhaps the most
straightforward. In this one expands the pressure, which is just the logarithm of the partition func-
tion, in a Taylor series in µ viz.

p
T 4 =

∞

∑
i, j,k=0

χi jk

i! j!k!

(
µB

T

)i(µQ

T

) j (µS

T

)k
. (1.1)

With three flavors of quarks, one has three chemical potentials (µu,µd ,µs). Through a change of
basis, we may work with a more physical set of chemical potentials corresponding to the conserved
charges, namely baryon number, electric charge and net strangeness (µB,µQ,µS). Of these, the
baryochemical potential µB is the one that is most relevant for our purposes. In this section, we
shall present results with µQ and µS set to zero. In the next section, we will fix µQ and µS from the
initial conditions relevant to Pb-Pb collisions.

Since the Taylor coefficients χi jk are defined at zero chemical potential, they can be evaluated
using standard lattice QCD techniques. However the signal-to-noise ratio deteriorates rapidly as
one goes to higher orders. This makes these calculations quite challenging and a significant amount
of computer time is required to obtain good results.

The BNL-Bielefeld-CCNU collaboration is in the process of calculating every Taylor coeffi-
cient upto sixth order. By doing this we hope to obtain, among other things, an equation of state
that is valid at all but the lowest beam energies of BES. We are currently working at two lattice
spacings viz. Nτ = 6 and 8, and with a nearly physical pion at mπ ≈ 160 MeV (ml = ms/20). Our
results for the 2nd and 4th order coefficients are shown in Fig. 1.

Our 6th order results are currently quite noisy despite the significant statistics. They can nev-
ertheless be used to obtain qualitative bounds on the maximum value of µB/T up to which a 4th

order extrapolation may be trusted. The sixth-order expansion of the pressure may be written as

p
T 4 = c0 + c2

(
µB

T

)2
{

1+
c4

c2

(
µB

T

)2
{

1+
c6

c4

(
µB

T

)2
}}

, cn =
χB

n

n!
. (1.2)

Let us focus on the important transition region T ≈ 155 MeV. From elsewhere [3] we know
that the zeroth-order contribution c0 ≈ 1 at this temperature. Similarly from Figs. 1 and 2 we get
c2 ≈ 0.05, c4/c2 ≈ 1/24 and c6/c4 ≈ 0.1. At µB/T = 2, these values lead to the 2nd, 4th and
6th order corrections being roughly 20, 23 and 25% of the zeroth-order result respectively. Thus

1Lattice QCD relies on the quark determinant being positive so that it can be interpreted as a probability distribution
and Monte Carlo techniques applied. At µ > 0 however, the determinant becomes complex. This means that the
probabilistic interpretation is lost and Monte Carlo techniques no longer apply.
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Figure 1: The first two Taylor coefficients with respect to µB (All odd coefficients are zero by CP symmetry)
for Nτ = 6 (top) and 8 (bottom). In all the figures, PDG refers to the Hadron Resonance Gas model curves,
constructed by including all Particle Data Group resonances up to 3 GeV and towards which our lattice
data tend at temperatures below the crossover region. The opposite limit, namely the free quark gas limit at
T = ∞, is marked “SB” in the figures. The green band in all three curves are our fits to the data (see text).

Figure 2: The ratios c4/c2 (left) and c6/c4 (right) for Nτ = 8.

the bulk of the finite-µB contribution come from the leading i.e. 2nd order, with higher orders
contributing only small corrections to this. This is a sign that the expansion is under control. By
contrast, the corresponding corrections at µB/T = 3 are 45, 63 and 77% respectively. Thus, not
only is each contribution significant by itself, but successive orders too alter the lower-order results
considerably. This is a sign that our sixth-order expansion is insufficient and that higher orders are
needed. Thus a conservative estimate for the range of applicability of our fourth-order equation of
state would be 0 6 µB/T 6 22.

2It must be remembered that this is for Nτ = 8. The continuum values for c4/c2, etc. could be different, leading to a
different estimate for the validity range of a fourth-order equation of state. However since our cutoff effects do not seem
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2. Physics on the freeze-out curve
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Figure 3: (Left) The freezeout curve according to the parametrization of Ref. (Right) χB
2 , which is the

baryon number variance, expanded to different orders and shown as a function of the beam energy and
µB/T .

The multiplicities of various hadrons produced in a heavy-ion collision are found to be well-
described by a statistical bootstrap model in which hadrons are in thermal equilibrium at tem-
perature and baryochemical potential T f and µ

f
B respectively. These freezeout parameters, when

extracted for various collision energies, fall on a curve known as the freezeout curve (Fig. 3 (left)).
There exist different parametrizations of this curve in the literature [4, 5, 6]. By plugging any one
of these parametrizations into our Taylor expansions, we can construct a 4th order equation of state
along this curve.

Before doing this however, we must fix the chemical potentials µQ and µS, which we had set
to zero in the previous section. To do this, we take into account the initial conditions in heavy-ion
collisions viz.

S = 0 and Q = rB. (2.1)

That is, the net strangeness is zero and the ratio of electric charge to baryon number is a constant
that is determined by the atomic and mass numbers of the colliding nuclei. By expanding these
conditions with respect to (µB,µQ,µS) and solving them order by order, we can fix µQ/µB and
µS/µB [7]. For the lead isotope that is collided at RHIC, one has Z = 82 and A = 205. We will
therefore use r = 0.4 in this section.

Fig. 3 (right) shows χB
2 , which is also the variance of the baryon number density, expanded

to different orders along the freezeout curve. The chemical potential increases as the beam energy
decreases. We see that a 2nd order expansion starts to break down below s1/2

NN ∼ 60 GeV, and a
4th order expansion is needed. Similarly, a 4th order expansion too would be insufficient below
s1/2

NN ∼ 20 GeV. In the context of BES therefore, our 4th order equation of state can provide a good
description of heavy-ion collisions down to s1/2

NN ∼ 20 GeV. In the future, we similarly hope to
provide an equation of state that will be valid for the entire range of BES i.e. down to s1/2

NN ∼ 5.5
GeV.

to be very large, we do not expect this estimate to change by much in going from Nτ = 8 to Nτ = ∞ .
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Figure 4: (Left) Energy density along the freezeout curve, calculated according to the parametrization
of Ref. [5] (Right) Line of constant pressure and energy density, calculated using our 2nd order Taylor
expansions.

Fig. 4 (left) also shows the energy density ε along the freezeout curve. There has been some
discussion in the literature [4] about the energy density having a constant value along the freezeout
curve. We verify this by calculating ε in our Taylor expansion. From Fig. 4 (right), we see that the
energy density does indeed remain constant at all but the lowest beam energies. We also see that
without the fourth-order term, this would seem to break down around s1/2

NN ∼ GeV. Conversely, we
may also construct “lines (or contours) of constant energy density,” and compare these to the ex-
perimental freezeout curve. We do this in Fig. 4. The red and blue curves are our 2nd order curves
keeping the energy density fixed at its T = 154 MeV, µB = 0 value. We see that the agreement
between theory and experiment, while not perfect, is nevertheless quite reasonable. From our con-
struction, we are also able to extract a value for the curvature of the line κ

f
2 viz. κ

f
2 = 0.0073(12)

for the pressure and κ
f

2 = 0.0105(14) for the energy density. These numbers may be compared with
an upper bound on the curvature of the freezeout line obtained recently by our collaboration viz.
κ

f
2 < 0.011 [8]. Of course, all of this is subject to the validity of the original conjecture, namely

that freezeout occurs at a constant value of the pressure or energy density.

3. Conclusions

The phase diagram of QCD at nonzero density is currently unknown. The ongoing BES pro-
gram at RHIC, as well as several upcoming experiments, aim to explore this part of the phase
diagram in greater detail. A knowledgde of the QCD equation of state at moderately large den-
sities therefore would be very useful. At this conference, we presented preliminary results for an
equation of state which we believe should be valid for a baryochemical potential µB/T . 2. We
used the method of Taylor expansions and carried out an expansion upto sixth order. Unfortunately,
our sixth order results are currently noisy; we therefore used them to put an upper bound on the
maximum value of µB upto which a fourth order equation may be trusted.

We found that a second order expansion proved to be inadequate below beam energies of
approximately 50 GeV. We also demonstrated that our fourth-order equation was valid down to
beam energies of roughly 20 GeV. We hope to improve on this in two ways in the future: (i) by
taking the continuum limit and (ii) by extending our calculations to lower beam energies.
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