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1. Introduction

In recent years, a lot of efforts have been undertaken to study the physics of quark gluon
plasma (QGP) after the advent of modern heavy ion collider. From the last couple of decades, non-
perturbative methods like lattice QCD (LQCD) simulations are very much successful to study and
to explain various properties of QGP. Another alternative framework to study the various properties
of QGP is perturbative method. One longstanding question is, to what extent can one use ideas
stemming from perturbation theory for QGP phenomenology. One focal point in this regard has
been high loop-order calculations of the QCD equation of state at finite temperature and density
and comparison of these approximations to lattice QCD results. The perturbative expansion of the
pressure of QCD at both zero [1] and non-zero chemical potential [2] are now known through order
g6 lng. However, one finds in practice that a strict perturbative expansion in the running coupling
converges only for temperatures many orders of magnitude higher than those relevant for heavy-
ion collision experiments. The source of the poor convergence comes from contributions from soft
momenta, p ∼ gT . This suggests that one should treat the soft sector non-perturbatively, or at least
reorganized the pertrbative series to treat the soft sector carefully.

There are various ways of reorganized the perturbative series at finite temperature and/or finite
chemical potential. Hard-thermal-loop perturbation theory (HTLpt) is one of such methods which
treats the soft sector more carefully. For scalar field theories one can resum pertrbative series
using a simpler variant called “screened perturbation theory” (SPT) [3, 4, 5, 6]. HTLpt, a gauge-
invariant generalization of SPT, was developed by Andersen, Braaten, and Strickland over a decade
ago [7] using the concept of Hard Thermal Loops approximation by Braaten and Pisarski [8].
Since then HTLpt has been used to calculate various quantities viz. thermodynamic functions at
one loop order [7, 9, 10, 11], two loop order [12, 13, 14], and three loop order at zero chemical
potential [15, 16, 17] as well as at finite chemical potential(s) [18, 19].

In this proceedings contribution we present a recent calculation of the thermodynamic poten-
tial at finite temperature and chemical potential(s) to three-loop order (next-to-next-to-leading order
or NNLO) in HTLpt. The result for equal quark chemical potentials was first presented in Ref. [18]
and the extension to flavor-dependent chemical potentials was presented in Ref. [19]. In both cases,
the resulting three-loop thermodynamic potential is renormalized using only known vacuum, mass,
and coupling constant counterterms and the final result is completely analytic and gauge invari-
ant. The resulting analytic thermodynamic potential can be used to obtain various thermodynamic
quantities, viz., the pressure, energy density, entropy density, trace anomaly, speed of sound, and
various quark number susceptibilities. As we will show below, there is good agreement between
our NNLO HTLpt results and lattice data down to temperatures on the order of 250 MeV. Below
we present plots of some of our main results and refer the reader to Ref. [19] for the calculation
details and a more detailed discussion of the systematic uncertainties, etc.

2. Results

In this section we present some of the final results from Ref. [19]. For all results shown
here we used the one-loop running coupling. We fixed the scale ΛMS = 176 for one loop running
from the lattice measurements [20] by requiring that αs(1.5 GeV) = 0.326. We use two separate
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renormalization scales, Λ and Λg, for (pure and mix) fermionic feynman graphs and purely-gluonic,
respectively. We take the central values of these renormalization scales to be Λg = 2πT and Λ =

2π

√
T 2 +µ2

q/π2. In all plots the thick black lines indicate the result obtained using these central
values and the light-blue band indicates the variation of the result under variation of both of these
scales by a factor of two, e.g. πT ≤ Λg ≤ 4πT . For all numerical results below we use Nc = 3 and
N f = 3.

æ
æ
æ
æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

1 loop Αs ; L
MS
=176 MeVΜB =0 MeV

200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

T @MeVD

P
�

P
id

e
a
l

Wuppertal-Budapest

NNLO HTLpt

æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ

1 loop Αs ; L
MS
=176 MeVΜB =400 MeV

200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

T @MeVD

P
�

P
id

e
a
l

Wuppertal-Budapest

NNLO HTLpt

Figure 1: Comparison of NNLO HTLpt pressure with lattice data from Borsányi et al. [21] and [22] at
µB = 0 (left) and µB = 400 MeV (right), respectively.

In Fig. 1 we compare our NNLO HTLpt pressure scaled with ideal gas pressure for µB = 0
(left) and µB = 400 MeV (right) with lattice data. In Fig. 2 we compare the NNLO HTLpt energy
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Figure 2: Comparison of the µB = 0 (left) and µB = 400 MeV (right) NNLO HTLpt energy density with
lattice data from Borsányi et al. [21] and [22], respectively.

density scaled with ideal gas energy density for µB = 0 (left) and µB = 400 MeV (right) with
available lattice data. In Fig. 3 we compare the NNLO HTLpt trace anomaly scaled with T 4 for
µB = 0 (left) and µB = 400 MeV (right) with available lattice data.

In Fig. 4 we compare second-order (left) and fourth-order (right) baryon number susceptibil-
ities scaled with corresponding ideal value with various lattice data. In Fig. 5 we compare the
scaled NNLO HTLpt fourth-order diagonal single quark number susceptibility (left) and the only
non-vanishing fourth-order off-diagonal quark number susceptibility (right) with various lattice
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Figure 3: Comparison of the µB = 0 (left) and µB = 400 MeV (right) NNLO HTLpt trace anomaly with
lattice data from Borsányi et al. [21] and [22], respectively.
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Figure 4: The scaled second-order (left) and fourth-order (right) baryon number susceptibilities compared
with various lattice data. The lattice data labeled WB, BNL-BI(B), BNL-BI(u,s), MILC, and TIFR come
from Refs. [23], [24], [25], [26], and [27], respectively.

data. As can be seen from Figs. 1-5, our NNLO HTLpt result has quite good agreement with avail-
able lattice data. For other quantities such as the entropy density, speed of sound, higher order
susceptibilities, etc. see Ref. [19].

3. Conclusions

The results for the QCD thermodynamic functions at finite temperature and chemical potential
at NNLO in HTLpt have been presented in this proceedings. We have used the final result for ther-
modynamic functions from Ref. [19] and final result therein is completely analytic, gauge-invariant
and does not contain any free fit parameters besides the choice of the renormalization scales Λg and
Λ. As can be seen from Figs. 1-5, the NNLO results have quite reasonable agreement with avail-
able lattice data. Since the NNLO HTLpt results for various thermodynamic quantities are in good
agreement with lattice data down to temperatures that are relevant for LHC, it offers some hope
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Figure 5: Comparison of the NNLO HTLpt fourth order diagonal single quark number susceptibility (left)
and the only non-vanishing fourth order off-diagonal quark number susceptibility (right) with lattice data.
In the left figure the dashed blue line indicates the Stefan-Boltzmann limit for this quantity. The data la-
beled BNL-BI(uudd), BNL-BI(u,s), BNL-BI(uuss), and TIFR come from Refs. [24], [25], [28], and [27],
respectively.

that application of HTLpt to the computation of other relevant quantities is not misguided at these
temperatures.
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