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We present the measurements of strange hadron elliptic flow at mid-rapidity in Au + Au collisions

at
√

sNN = 7.7 - 200 GeV using the STAR detector in the years 2010 and 2011. The transverse

momentum and collision centrality dependence of elliptic flow is presented. At the intermediate

transverse momentum Ω baryon and φ -meson show baryon-meson separation effect similar to

proton and pion for minimum-bias Au+Au collision at
√

sNN =200 GeV. This indicates formation

of collective flow at the early partonic phase. The separation between baryons and mesons at

intermediate transverse momentum decreases with decrease in beam energy and almost disappears

at
√

sNN ≤ 11.5 GeV, indicating hadronic interaction being dominant at the lower beam energy.

We observe difference in elliptic flow between particle and anti-particle and this increases with

decrease in beam energy. Differences are larger for baryons than mesons. The relative difference

between particle and anti-particle elliptic flow is larger in central collisions than in peripheral

ones.
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1. Introduction

According to quantum chromodynamics (QCD) at very high temperature and/or at high den-

sity, a de-confined phase of quarks and gluons is expected to be present, while at low temperature

and low density the quarks and gluons are known to be confined inside hadrons. The aim of the

STAR experiment at Relativistic Heavy Ion Collider (RHIC) is to study the QCD matter by col-

liding nuclei at ultra-relativistic speeds [1]. Using the information carried by freely streaming

final-state particles as probes, we try to understand the properties of the medium created in these

collisions. Strange particle elliptic flow (v2) is one of the observables that is expected to deliver

detailed information on the reaction dynamics of relativistic nucleus-nucleus collisions [2, 3, 4].

In high energy heavy-ion collisions, particles are produced with an azimuthally anisotropic mo-

mentum distribution. Elliptic flow is a measure of azimuthal angle (ϕ) anisotropy of the produced

particles with respect to the reaction plane angle (ψ). The elliptic flow is believed to arise due to

the pressure gradients developed in the overlap region of the two nuclei colliding at nonzero impact

parameter. The v2 is an early time phenomenon and expected to be sensitive to the equation of state

of the system formed in the collision [5]. Thus v2 can be used as a probe for early system although

its magnitude may change due to later-stage hadronic interactions. The interaction cross-sections

of the multi-strange hadrons (Ξ, Ω) and φ -meson with non-strange hadrons are expected to have a

small value and therefore its production should be less affected by the later stage hadronic interac-

tions in the evolution of the system formed in heavy-ion collisions [6, 7, 8]. Moreover they seem to

freeze-out early than non-strange hadrons [9]. Therefore, multi-strange hadrons can be considered

as a clean probe to study the QCD matter.

2. Data sets and methods

The results presented here are based on data collected at
√

sNN= 7.7, 11.5, 19.6, 27, 39, 62.4

and 200 GeV in Au+Au collisions by the STAR detector for a minimum bias trigger in the years

of 2010 and 2011. The Time Projection Chamber (TPC) and Time of Flight (TOF) detectors with

full 2π coverage are used for particle identification in the central pseudo-rapidity (η) region (|η |<
1.0). We reconstruct short-lived K0

S , Λ(Λ), Ξ−(Ξ
+
), Ω−(Ω

+
) and φ through the following decay

channels : K0
S → π+ + π−, Λ → p + π− (Λ → p̄ + π+ ), Ξ− → Λ + π− (Ξ

+ → Λ + π+), Ω− → Λ

+ K− (Ω
+→ Λ + K+) and φ → K+ + K−. Mixed event technique has been used for combinatorial

background estimation [10] as shown in Fig 1. The η-sub event plane method [11] using TPC

tracks has been applied to measure the elliptic flow. In this method, one defines the event flow

vector for each particle based on particles measured in the opposite hemisphere in pseudo-rapidity

(η).

v2(η+ ) =
< cos[2(φη+ −ψ2,η

+
)]>

√

< cos[2(ψ2,η+ −ψ2,η−)]>
. (2.1)

Here ψ2,η+(ψ2,η−) is the second harmonic event plane angle defined for particles with positive(negative)

pseudo-rapidity. An η gap of ∆η= 0.1 between positive and negative pseudo-rapidity sub-events

has been introduced to suppress non-flow effects.
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Figure 1: (Color online) Examples of the invariant mass distributions at
√

sNN = 62.4 GeV for φ , K0
S , Λ(Λ),

Ξ−(Ξ
+
) and Ω−(Ω

+
). The combinatorial background is described by the mixed-event technique.

3. Results

3.1 Elliptic Flow at Top RHIC Energy

The number of constituent quarks (NCQ) scaling in v2 for different identified hadrons has

been considered as a good probe for studying the strongly interacting partonic matter. The ob-

served NCQ scaling of identified hadrons in experimental data [12] indicates the importance of

parton recombination in forming hadrons in the intermediate pT range (2.0 GeV/c < pT < 4.0

GeV/c) [13, 14, 15]. Such scaling may indicate that collective elliptic flow is developed during

the partonic phase. The large statistics data sets collected by STAR detectors allow us to measure

elliptic flow of multi-strange hadrons, specifically that of the Ω baryon which is made of pure

strange (s) or anti-strange (s̄) constituent quarks and of the φ meson, consisting of one s and one s̄

constituent quark. Fig. 2 shows the v2 as a function of pT for π , p, φ and Ω for 0-80% centrality
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Figure 2: (Color online) The v2 as function of pT for π , p (panel a) and φ , Ω (panel b) from minimum bias

Au+Au collisions at
√

sNN = 200 GeV for 0-80% centrality [16]. The systematic uncertainties are shown by

the shaded boxes while vertical lines represent the statistical uncertainties.

in Au + Au collisions at
√

sNN = 200 GeV [16]. Fig. 2 (a) shows a comparison between v2 of π

3
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and p, consisting of up (u) and down (d) light quarks, and Fig. 2 (b) shows a comparison of v2 of

φ and Ω containing heavier s quarks. The v2 of φ and Ω are mass ordered at low pT and a baryon-

meson separation is observed at intermediate pT . It is clear from Fig. 2 that the v2(pT ) of hadrons

consisting only of strange quarks (φ and Ω) is similar to that of π and p. However, unlike π and p,

the φ and Ω do not participate strongly in the hadronic interactions, which suggests that the major

part of collectivity is developed during the partonic phase in Au + Au collisions at
√

sNN = 200 GeV.

Fig. 3 shows the v2 scaled by number of constituent quarks (nq) as a function of pT/nq and

(mT − m0)/nq for identified hadrons from Au + Au collisions at
√

sNN = 200 GeV for 0-30%

and 30-80% centrality [16], where mT and m0 are the transverse mass and rest mass of hadron,

respectively. To quantify the deviation from NCQ scaling, we fit the K0
S v2 with a third-order

polynomial function. We then take the ratio of v2 for the other measured hadrons to the K0
S fit. The

ratios are shown in the lower panels of Fig. 3. For both 0-30% and 30-80% centralities, the scaling

holds approximately within 10%, excluding pions. The deviation of pions could be due the effect

of resonance decay and non-flow correlations [17].
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Figure 3: (Color online) The v2 scaled by number of constituent quarks (nq) as a function of pT/nq and

(mT −m0)/nq for identified hadrons from Au + Au collisions at
√

sNN = 200 GeV [16]. Ratios with respect

to a fit to the K0
S v2 are shown in the corresponding lower panels. Vertical lines are statistical uncertainties

and shaded boxes are systematic uncertainties.

3.2 Elliptic Flow at Beam Energy Scan

3.2.1 Elliptic flow as a function of transverse mass

Fig. 4 shows v2 as function of (mT −m0) at
√

sNN = 7.7-62.4 GeV [18, 19]. There is a clear

splitting between baryons and mesons for larger (mT −m0) values at
√

sNN = 62.4 GeV. As we

go down in energy, the splitting becomes narrower and at 11.5 GeV, the difference between the

baryons and mesons is no longer observed. Also, we observed that v2 of φ mesons falls off the

trend from the other hadrons at
√

sNN ≤ 11.5 GeV. This could be related to the lower hadronic cross

sections of particles containing multiple strange quarks [6, 7, 8]. These observations may indicate

that hadronic interactions become more important than partonic ones for the systems formed at

collision energies
√

sNN ≤ 11.5 GeV.

4



P
o
S
(
I
C
P
A
Q
G
P
2
0
1
5
)
0
6
4

Strange hadron elliptic flow in STAR Md. Nasim (for the STAR collaboration)

0 1 2 3 4

0 1 2 3 4

2v

0

0.1

0.2

0

0.1

0.2a) 7.7 GeV -π
-

K

S
0K

-p

φ

Λ
+

Ξ
+

Ω

0 1 2 3 4

0 1 2 3 4

2v

0

0.1

0.2

0

0.1

0.2d) 27 GeV 0 1 2 3 4

0

0.1

0.2

0

0.1

0.2b) 11.5 GeV

)2 (GeV/c0-mTm
0 1 2 3 4

0

0.1

0.2

0

0.1

0.2e) 39 GeV 0 1 2 3 4

0

0.1

0.2

0

0.1

0.2c) 19.6 GeV

0-80%

0 1 2 3 4

0

0.1

0.2

0

0.1

0.2f) 62.4 GeV

Figure 4: (Color online) The elliptic flow (v2) as a function of (mT −m0) for selected particles in the Au+Au

collision at various beam energies for 0-80% centrality [18, 19]. Error bars are only statistical uncertainties.

3.2.2 Energy and centrality dependence of the particle and antiparticle v2 difference

The energy dependence of the v2 difference between particles and antiparticles for different

centralities are shown in Fig. 5. Top panel shows the differences for π , K, p, Λ and Ξ at 10-40%

collisions centrality. We can see that the difference for all baryons are same at 10-40% centrality

for all
√

sNN , which is consistent with the observation at 0-80% [18, 19]. Middle and lower panel

of Fig. 5 show the differences between protons and anti-protons for 0-10%, 10-40% and 40-80%

centralities. The y-axis of the lower panel is scaled by the proton v2 at pT =1.5 GeV/c (labeled as

vnorm
2 ) to show the relative difference. We can see, the relative difference in v2 between protons and

anti-protons increases from peripheral (40-80%) to central (0-10%) collisions. This observation

support the model prediction [20], which includes baryon stopping as a mechanism to explain the

data.

4. Summary

Energy and centrality dependence of strange hadron v2 at mid-rapidity are presented. The

pT dependence of φ and Ω v2 is similar to π and p v2 at top RHIC energy, which indicates that

the major parts of collectivity were developed at the initial partonic phase at
√

sNN = 200 GeV.

To investigate partonic collectivity for different system size, NCQ scaling has been presented for

two different collision centralities, 0-30% and 30-80%. It is observed that the NCQ scaling holds

within the statistical uncertainty for both 0-30% and 30-80% centralities. Splitting between baryon

and meson at intermediate pT , which formed the basis of NCQ scaling observation at top RHIC

energy, was not observed at the lower energies indicating formation of a matter mostly governed
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Figure 5: (Color online) The difference in v2 values between a particle(X) and its corresponding antiparticle

(X) as a function of
√

sNN . The dashed lines in plot are fits using function f∆v2
(
√

sNN) = a× s
−b/2
NN . Here

vnorm
2 is equal to proton v2 at pT =1.5 GeV/c.

by hadronic interaction. We observed beam-energy dependent difference in v2 between particle

and corresponding anti-particle. Differences are larger for baryons than mesons. The difference
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increases with decreasing beam energy. Relative difference between particle and anti-particle v2 is

larger in central collisions than in peripheral ones.
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