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Possible phase transition of strongly interacting matter from hadron to a quark-gluon plasma
state have in the past received considerable interest. The clustering of color sources provides
a framework of the partonic interactions in the initial stage of the collisions. The onset of de-
confinement transition is identified by the spanning percolation cluster in 2D percolation.
The thermodynamical quantities, the temperature, and energy density derived from RHIC and
LHC data and Color String Percolation Model (CSPM) are used to obtain the shear viscosity to
entropy density ratio (η/s). It was observed that the inverse of (η/s) represents the trace anomaly
∆ = (ε−3P)/T 4. Results are in agreement with the Lattice Quantum Chromo Dynamics(LQCD)
simulations. Thus the clustering of color sources has a clear physical basis although it cannot be
deduced directly from QCD.
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Figure 1: Partonic cluster structure in the transverse collision plane at low (left) and (right) high parton
density [3].

1. Introduction

One of the main goal of the study of relativistic heavy ion collisions is to study the deconfined
matter, known as Quark-Gluon Plasma (QGP), which is expected to form at large densities. It has
been suggested that the transition from hadronic to QGP state can be treated by the percolation
theory [1]. The formulation of percolation problem is concerned with elementary geometrical
objects placed on a random d-dimensional lattice. The objects have a well defined connectivity
radius λ , and two objects can communicate if the distance between them is less than λ . Several
objects can form a cluster of communication. At certain density of the objects a infinite cluster
appears which spans the entire system. This is defined by the dimensionless percolation density
parameter ξ [2]. Percolation theory has been applied to several areas ranging from clustering in
spin system to the formation of galaxies. Figure 1 shows the parton distribution in the transverse
plane of a overlapping region of low and high density partons [3].

All high energy soft multi-hadron interactions exhibit thermal patterns of abundances charac-
terized by the same temperature, independent of the center of mass energy [4, 5]. The hadron lim-
iting temperatures were measured by statistical thermal analyses that fit the data with a minimum
of parameters [4, 5]. In heavy ion collisions it may be plausible that multiple parton interactions
produce a thermalized system.

In this talk results are presented for the temperature, equation of state and the transport coeffi-
cient and compared with the recent LQCD simulations.

2. Clustering of Color Sources

Multi-particle production at high energies is currently described in terms of color strings
stretched between the projectile and target. Hadronizing these strings produce the observed hadrons.
At low energies only valence quarks of nucleons form strings that then hadronize. The number of
strings grows with the energy and with the number of nucleons of participating nuclei. Color strings
may be viewed as small discs in the transverse space filled with the color field created by colliding
partons. Particles are produced by the Schwinger mechanisms [6]. With growing energy and size
of the colliding nuclei the number of strings grow and start to overlap to form clusters [7, 8, 9]. At
a critical density a macroscopic cluster appears that marks the percolation phase transition. This

2



P
o
S
(
I
C
P
A
Q
G
P
2
0
1
5
)
0
6
5

P
o
S
(
I
C
P
A
Q
G
P
2
0
1
5
)
0
6
5

De-Confinement and Percolation Brijesh K Srivastava

is termed as Color String percolation Model (CSPM) [7, 8]. The interaction between strings oc-
curs when they overlap and the general result, due to the SU(3) random summation of charges, is
a reduction in the multiplicity and an increase in the string tension or an increase in the average
transverse momentum squared, 〈p2

t 〉. We assume that a cluster of n strings that occupies an area
of Sn behaves as a single color source with a higher color field ~Qn corresponding to the vectorial
sum of the color charges of each individual string ~Q1. The resulting color field covers the area of
the cluster. As ~Qn = ∑

n
1
~Q1, and the individual string colors may be oriented in an arbitrary manner

respective to each other , the average ~Q1i ~Q1 j is zero, and ~Q2
n = n~Q2

1.
Knowing the color charge ~Qn one can obtain the multiplicity µ and the mean transverse mo-

mentum squared 〈p2
t 〉 of the particles produced by a cluster of n strings [8]

µn =

√
nSn

S1
µ0; 〈p2

t 〉=
√

nS1

Sn
〈p2

t 〉1 (2.1)

where µ0 and 〈p2
t 〉1 are the mean multiplicity and 〈p2

t 〉 of particles produced from a single string
with a transverse area S1 = πr2

0. In the thermodynamic limit, one obtains an analytic expression
[7, 8]

〈nS1

Sn
〉= ξ

1− e−ξ
≡ 1

F(ξ )2 ; F(ξ ) =

√
1− e−ξ

ξ
(2.2)

where F(ξ ) is the color suppression factor. ξ = NsS1
SN

is the percolation density parameter assumed
to be finite when both the number of strings NS and total interaction area SN are large. Eq. (2.1) can
be written as µn = F(ξ )µ0 and 〈p2

t 〉n = 〈p2
t 〉1/F(ξ ). The critical cluster which spans SN , appears

for ξc ≥ 1.2 [10].
It is worth noting that CSPM is a saturation model similar to the Color Glass Condensate

(CGC), where 〈p2
t 〉1/F(ξ ) plays the same role as the saturation momentum scale Q2

s in the CGC
model [11, 12].

3. Color Suppression Factor F(ξ )

The suppression factor is determined by comparing the charged hadron transverse momentum
spectra from pp and A+A collisions. To evaluate the initial value of F(ξ ) from data for Au+Au
collisions, a parameterization of pp events at 200 GeV is used to compute the pt distribution [13]

dNc/d p2
t = a/(p0 + pt)

α (3.1)

where a is the normalization factor. p0 and α are parameters used to fit the data. This parameter-
ization also can be used for nucleus-nucleus collisions to take into account the interactions of the
strings [8]

dNc/d p2
t =

a′

(p0
√

F(ξpp)/F(ξAA)+ pt)
α (3.2)

In pp collisions F(ξ )pp ∼ 1 at these energies due to the low overlap probability. F(ξ ) is related to
ξ by Eq. (2.2).

3
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4. Temperature measurement and thermalization

The connection between ξ and the temperature T (ξ ) involves the Schwinger mechanism (SM)
for particle production. The Schwinger distribution for massless particles is expressed in terms of
p2

t [14]
dn/d p2

t ∼ exp(−π p2
t /x2) (4.1)

where the average value of the string tension is 〈x2〉. The tension of the macroscopic cluster fluc-
tuates around its mean value because the chromo-electric field is not constant. The origin of the
string fluctuation is related to the stochastic picture of the QCD vacuum. Since the average value
of the color field strength must vanish, it cannot be constant but changes randomly from point to
point [15]. Such fluctuations lead to a Gaussian distribution of the string tension

dn
d p2

t
∼
√

2
< x2 >

∫
∞

0
dxexp(− x2

2 < x2 >
)exp(−π

p2
t

x2 ) (4.2)

which gives rise to thermal distribution [15]

dn
d p2

t
∼ exp(−pt

√
2π

〈x2〉
), (4.3)

with 〈x2〉 = π〈p2
t 〉1/F(ξ ). The temperature is expressed as [13, 16]

T (ξ ) =

√
〈p2

t 〉1
2F(ξ )

. (4.4)

We will adopt the point of view that the experimentally determined chemical freeze-out temperature
is a good measure of the phase transition temperature, Tc [4]. The single string average transverse
momentum 〈p2

t 〉1 is calculated at ξc = 1.2 with the universal chemical freeze-out temperature of
167.7 ± 2.6 MeV [5]. This gives

√
〈p2

t 〉1 = 207.2 ± 3.3 MeV which is close to ' 200 MeV used
previously in the calculation of percolation transition temperature [16].

Recently, it has been suggested that fast thermalization in heavy ion collisions can occur
through the existence of an event horizon caused by a rapid deceleration of the colliding nuclei
[17]. The thermalization in this case is due the Hawking-Unruh effect [18, 19]. In CSPM the
strong color field inside the large cluster produces de-acceleration of the primary qq̄ pair which can
be seen as a thermal temperature by means of Hawking-Unruh effect. This implies that the radia-
tion temperature is determined by the transverse extension of the color flux tube/cluster in terms of
the string tension [20].

T =

√
σ

2π
(4.5)

The temperature obtained using Eq. (4.4) was ∼ 193.6 MeV for Au-Au collisions at
√

sNN = 200
GeV in reasonable agreement with Ti = 221 ±19stat ±19sys MeV from the enhanced direct photon
experiment measured by the PHENIX Collaboration [21]. For Pb-Pb collisions at

√
sNN = 2.76 TeV

the temperature is ∼ 262.2 MeV for 0-5% centrality, which is expected to be ∼ 35 % higher than
the temperature from Au-Au collisions [13]. A recent summary of the results from Pb-Pb collisions
at the LHC has mentioned that the initial temperature increases at least by 30 % as compared to the
top RHIC energy [22]. The direct photon measurements from ALICE gives the temperature of Ti

= 304 ±51 MeV [23].
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Figure 2: Energy density ε as a function of the percolation density parameter ξ . The extrapolated value for
LHC energy is shown as blue square [25].

5. Energy Density

Among the most important and fundamental problems in finite-temperature QCD are the cal-
culation of the bulk properties of hot QCD matter and characterization of the nature of the QCD
phase transition. The QGP according to CSPM is born in local thermal equilibrium because the
temperature is determined at the string level. After the initial temperature T > Tc the CSPM perfect
fluid may expand according to Bjorken boost invariant 1D hydrodynamics [24]

ε =
3
2

dNc
dy 〈mt〉
Snτpro

(5.1)

where ε is the energy density, Sn nuclear overlap area, and τ the proper time. Above the critical
temperature only massless particles are present in CSPM. To evaluate ε we use the charged pion
multiplicity dNc/dy at midrapidity and Sn values from STAR for 0-10% central Au-Au collisions
at
√

sNN =200 GeV [13]. The factor 3/2 in Eq. (5.1) accounts for the neutral pions. The average

transverse mass 〈mt〉 is given by 〈mt〉 =
√
〈pt〉2 +m2

0, where 〈pt〉 is the transverse momentum of
pion and m0 being the mass of pion.

τpro =
2.405h̄
〈mt〉

(5.2)

In CSPM the total transverse energy is proportional to ξ . From the measured value of ξ and ε , as
shown in Fig. 2, it is found that ε is proportional to ξ for the range 1.2 < ξ < 2.88, εi = 0.788 ξ

GeV/ f m3 [25]. This relationship has been extrapolated to below ξ = 1.2 and above ξ = 2.88 for
the energy density calculations normalized to T 4. Figure 3 shows ε/T 4 as obtained from CSPM
along with the Lattice QCD results from HotQCD Collaboration [26].

6. Shear Viscosity

The relativistic kinetic theory relation for the shear viscosity over entropy density ratio, η/s is

5
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Figure 3: ε/T 4 versus T/Tc from CSPM (red circles) and Lattice QCD (blue dash line) for 2+1 flavor and
p4 action [26].

given by [27]
η

s
'

T λm f p

5
(6.1)

where T is the temperature and λm f p is the mean free path. λm f p ∼ 1
(nσtr)

where n is the number
density of an ideal gas of quarks and gluons and σtr the transport cross section. In CSPM the
number density is given by the effective number of sources per unit volume [25]

n =
Nsources

SNL
(6.2)

L is the longitudinal extension of the source, L = 1 fm. η/s is obtained from ξ and the temperature

η

s
=

T L
5(1− e−ξ )

(6.3)

Figure 4 shows a plot of η/s as a function of T/Tc. The lower bound shown in Fig. 4 is given by
AdS/CFT [29]. The results from Au+Au at 200 GeV and Pb+Pb at 2.76 TeV collisions show that
the η/s value is 2.5 and 3.3 times the KSS bound [29].

7. η/s to Scaled jet quenching parameter q̂/T 3

The small shear viscosity of the QGP implies strong jet quenching. It has been suggested that
the jet quenching parameter q̂ can also be used to measure the coupling strength of the medium.
The shear viscosity η of a weakly coupled plasma can be related to the transport parameter for a
thermal parton q̂ [30, 31].

η

s
≈ 3

2
T 3

q̂
(7.1)

The relation associates a small ratio of η/s to a large value of q̂. A large amount of theoretical work
has been done to extract q̂ from jet quenching at RHIC and LHC energies [30, 31, 32, 33]. The

6



P
o
S
(
I
C
P
A
Q
G
P
2
0
1
5
)
0
6
5

P
o
S
(
I
C
P
A
Q
G
P
2
0
1
5
)
0
6
5

De-Confinement and Percolation Brijesh K Srivastava

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

cT/T

π1/4 AdS/CFT

Color string percolation model

sQGP

wQGP

AuAu 200 GeV  RHIC

/s
η 

PbPb 2.76 TeV  LHC

Meson Gas

Figure 4: η/s as a function of T/Tc. Au+Au at 200 GeV for 0-10% centrality is shown as solid black
square.The estimated value for Pb+Pb at 2.76 TeV for 0-5% centrality is shown as a solid blue square.The
red dotted line represents the extrapolation to higher temperatures from the CSPM. The hadron gas value for
η/s ∼ 0.7 is shown as solid black circle at T/Tc ∼0.88 [28].

latest study by the JET Collaboration has extracted or calculated q̂ from five different approaches
to the parton energy loss in a dense medium. The evolution of bulk medium in the study was given
by 2+1D or 3+1D hydrodynamic models with the initial temperatures of T Hydro

RHIC = 346-373 MeV
and T Hydro

LHC = 447-486 MeV for most central Au+Au collisions at
√

sNN = 200 GeV and Pb+Pb
collisions at

√
sNN = 2.76 TeV respectively. The variation of q̂ values between different models can

be considered as theoretical uncertainties. One therefore can extract its range of values at RHIC
and LHC [32, 33].

q̂
T 3 ≈ {

4.5±1.3 at RHIC
3.7±1.4 at LHC , (7.2)

at the highest temperatures reached in the most central Au+Au collisions at RHIC and Pb+Pb
collisions at LHC. The corresponding absolute values for q̂ (GeV 2/ f m) for a 10 GeV quark jet are,

q̂≈ {1.2±0.3
1.9±0.7

T=370MeV
T=470MeV , (7.3)

at an initial time τ0 = 0.6 f m/c. The temperature dependence of scaled jet transport parameter
q̂

T 3 is shown in Fig. 5. The CSPM values are shown as solid green squares while the theoretical
values are shown as blue squares. It is observed that CSPM values are in agreement with the JET
Collaboration results.

8. η/s and Trace anomaly ∆

The trace anomaly (∆) is the expectation value of the trace of the energy-momentum tensor,
〈Θµ

µ〉 = (ε − 3p), which measures the deviation from conformal behavior and thus identifies the
interaction still present in the medium [34]. We find that the reciprocal of η/s is in quantitative
agreement with (ε − 3p)/T 4 over a wide range of temperatures [35, 36]. This result is shown
in Fig. 6. The minimum in η/s ∼ 0.20 determines the peak of the interaction measure ∼ 5 in
agreement with the recent HotQCD values [37]. This happens at the critical temperature of Tc∼ 175

7
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Figure 5: Scaled jet quenching parameter q̂
T 3 as a function of the temperature. The values shown in solid

blue squares Hydro(RHIC) and Hydro(LHC) are given by Eq. (7.2). The CSPM values are shown in green
solid squares CSPM(RHIC) and CSPM(LHC) for temperatures ∼193 and ∼262 MeV at RHIC and LHC
energies, respectively.

MeV. Figure 6 also shows the results from Wuppertal Collaboration [38]. The maximum in ∆

corresponds to the minimum in η/s. Both ∆ and η/s describe the transition from a strongly coupled
QGP to a weakly coupled QGP.
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CSPM
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Figure 6: The trace anomaly ∆ = (ε − 3p)/T 4 vs temperature [37]. Red solid squares are from HotQCD
Collaboration [37]. Black stars are from Wuppertal Collaboration [38].

9. Equation of State EOS : The sound velocity C2
s

An analytic expression for the equation of state, the sound velocity C2
s is obtained in CSPM.

After the initial temperature T > Tc the CSPM perfect fluid may expand according to Bjorken boost
invariant 1D hydrodynamics [24]. The input parameters the initial temperature T, the initial energy

8
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density ε , and the trace anomaly ∆ are determined by data. The Bjorken 1D expansion gives the
sound velocity

1
T

dT
dτ

=−C2
s /τ (9.1)

dε

dτ
=−T s/τ (9.2)

where ε is the energy density, s the entropy density, τ the proper time, and Cs the sound velocity.
Since s = ε + p/T and p = (ε−∆T 4)/3 one gets

dT
dε

s =C2
s (9.3)

From above equations C2
s can be expressed in terms of ξ

C2
s = (−0.33)

(
ξ e−ξ

1− e−ξ
−1

)
(9.4)

+ (∆/3)
(

0.019
1− e−ξ

)(
ξ e−ξ

1− e−ξ
−1

)
(9.5)

Since there is no direct way to obtain pressure in the CSPM, we have made the assumption that
∆ = (ε−3P)≈ 1/(η/s) . Figure 7 shows a plot of C2

s as a function of T/Tc. It is observed that the
CSPM results are in very good agreement with the lattice calculations [39]. This suggests that the
∆ can be approximated to 1/(η/s).

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.15

0.2

0.25

0.3

0.35

0.4

cT/T

2 s
c

Lattice QCD simulation

2+1 flavor

Limiting value

Color string percolation model

=2.88ξ 

Figure 7: The speed of sound from CSPM (red circles) and Lattice QCD-p4 versus T/Tc (blue dash line)
[39].

10. Discussion

We have shown that the inverse of the shear viscosity to entropy density ratio is able to give
good description of the trace anomaly. The jet quenching transport coefficient q̂ is also obtained

9
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using the relation with η/s. It is observed that scaled jet quenching parameter shows a pronounced
maximum close to the critical temperature as seen in the trace anomaly. This indicates that jet
quenching parameter can characterize the phase transition [40, 41]. It has been also shown, with
in a phenomenological quasi-particle approach, that trace anomaly has a pronounced peak near the
critical temperature [42, 43].

The clustering of color sources has shown that the determination of η/s as a function of
temperature is an important quantity that relates to another transport coefficient, q̂ and the trace
anomaly ∆. The main assumption of the present approach is that the inverse of η/s represents the
trace anomaly, ∆ = (ε − 3p)/T4. The clustering of color sources (percolation) provides us with a
microscopic partonic picture that connects the transport properties of the QGP to its thermodynam-
ics.
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