
P
o
S
(
I
C
P
A
Q
G
P
2
0
1
5
)
0
7
4

Isospin symmetry breaking and Baryon-Isospin
correlations in effective mean field models.

Abhijit Bhattacharyya
University of Calcutta, Kolkata
E-mail: abphy@caluniv.ac.in

Sanjay K. Ghosh
Center for Astroparticle Physics & Space Science, Bose Institute, Kolkata
E-mail: sanjay@jcbose.ac.in

Anirban Lahiri
Tata Institute of Fundamental Research, Mumbai
E-mail: anirbanlahiri.physics@gmail.com

Sarbani Majumder ∗

Saha Institute of Nuclear Physics, Kolkata, India.
E-mail: sarbanimajumder@gmail.com

Sibaji Raha
Center for Astroparticle Physics & Space Science, Bose Institute, Kolkata
E-mail: sibaji@jcbose.ac.in

Rajarshi Ray
Center for Astroparticle Physics & Space Science, Bose Institute, Kolkata
E-mail: rajarshi@jcbose.ac.in

A study of the 1+1 flavor system of strongly interacting matter in terms of the

Polyakov−Nambu−Jona-Lasinio model is presented. It is found that though thesmall isospin

symmetry breaking brought in through unequal light quark masses is too small to affect the ther-

modynamics of the system in general, it may have significant effect in baryon-isospin correlations

and have a measurable impact in heavy-ion collision experiments.
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Isospin symmetry breaking and Baryon-Isospin correlations in effective mean field models.

1. Introduction

Quantum Chromodynamics (QCD) is the formulation for first principle studies of strongly
interacting matter. Along with the local color symmetry, the quark sector has fewglobal symmetries
also. In the chiral limit for two light flavorsu and d, we have global vector and axial vector
symmetrySUV(2)⊗SUA(2). For non-zero quark masses, the axial symmetrySUA(2) is explicitly
broken, while for non-zero quark mass difference vector (isospin) symmetrySUV(2) is explicitly
broken. Apart from the quark mass difference, ISB effects may be brought in by electromagnetic
contributions as well.

Some Lattice QCD investigation of the effect of unequal quark masses was done in Ref.[1].
Recently in Ref.[2, 3] the effect of ISB on different hadronic observables were studied. Within the
framework of chiral perturbation theory the isospin breaking effect in quark condensates has been
studied consideringmu 6= md and electromagnetic corrections as well, where an analysis of scalar
susceptibilities [4, 5] is given. In effective mean field model like Nambu−Jona-Lasinio (NJL)
model, both of the above-mentioned effects have been incorporated [6] tostudy the influence of
the isospin symmetry breaking on the orientation of chiral symmetry breaking. In the present work
we describe the first case study of ISB effect on fluctuations and correlations of strongly interacting
matter within the framework of the Polyakov loop enhanced Nambu−Jona-Lasinio (PNJL) model.
We discuss the possible experimental manifestations of the ISB effects based on quite general
considerations in the limit of small current quark masses.

2. Formalism

Here we use the form of the 2 flavor PNJL model with the Lagrangian as in Ref.[7, 8];

LPNJL= − U [Φ[A],Φ̄[A],T]+ ψ̄( /D− m̂)ψ
+ G1[(ψ̄ψ)2+(ψ̄~τψ)2+(ψ̄ iγ5ψ)2+(ψ̄ iγ5~τψ)2]

+ G2[(ψ̄ψ)2− (ψ̄~τψ)2− (ψ̄ iγ5ψ)2+(ψ̄ iγ5~τψ)2] (2.1)

U [Φ[A],Φ̄[A],T] is the effective potential expressed in terms of traced Polyakov loopΦ and its
charge conjugatēΦ. Here we shall consider a mass matrix of the form:

m̂= m1112×2−m2τ3

=

(

m1−m2 0
0 m1+m2

)

≡

(

mu 0
0 md

)

.

where, 112×2 is the identity matrix in flavor space andτ3 is the third Pauli matrix. Heremu andmd

are the current masses of theu andd quarks respectively. While a non-zerom1 breaks the chiral
SUA(2) symmetry explicitly a non-zerom2 does the same for the isospinSUV(2) symmetry. We
have restricted ourselves toG1 = G2 = G which impliesm2 = (Md−Mu)/2, whereMu andMd are
the constituent masses of theu andd quarks respectively. Deriving the thermodynamic potential
from Lagrangian, different charge susceptibilities can be obtained from corresponding chemical
potential derivative of thermodynamic potential.

2



P
o
S
(
I
C
P
A
Q
G
P
2
0
1
5
)
0
7
4

Isospin symmetry breaking and Baryon-Isospin correlations in effective mean field models.

3. Off-diagonal Susceptibilities for µB = 0
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Figure 1: Second order off-diagonal susceptibility inB− I sector atµB = 0.

In Fig.1 the second order off-diagonal susceptibilityχBI
11, is shown for different values ofm2.

As expected we findχBI
11 = 0 for m2 = 0. For non-zerom2 we findχBI

11 to have non-zero values that
change non-monotonically with the increase in temperature.

An exciting feature observed here is that there is an almost linear scaling ofχBI
11 with m2. This

is shown in the inset of Fig.1.
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Figure 2: Behavior of 4th order off diagonal susceptibility for differentm2.

The fourth order off-diagonal susceptibilities in theB− I sector areχBI
13, χBI

31 andχBI
22. Them2

dependence ofχBI
22 was found to be insignificant. ForµB = 0, theT dependence for the other two

susceptibilities along with theirm2 scaling is shown in Fig.2.
We can express differentB− I correlators in terms of those in the flavor space. The flavor

diagonal susceptibilities can be expanded in a Taylor series of the quark masses aroundmu = md =

0. From this one is able to undestand the presence ofm2 scaling for some correlators. The detail
analysis is shown in [9].

4. Off diagonal Susceptibilities for µB 6= 0

Here we show the variation ofχBI
11 with µB for four different temperatures. The features vary

widely over the different ranges of temperature and chemical potential. AtT ∼ 2Tc, χBI
11 is positive,

and slowly decreases with increasingµB. Close toTc, χBI
11 drops sharply to zero, becomes negative
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and then again slowly approaches zero. Going down somewhat belowTc there is an initial increase
in χBI

11 for some range ofµB, and thereafter it follows the behavior atTc. Finally at very low
temperatures the change in sign ofχBI

11 is marked by a discontinuity, arising due to a first order
phase boundary which exists in this range ofT andµB.
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Figure 3: χBI
11 along baryon chemical potential at different temperatures.

These various features can be understood by expressingχBI
11 = ∂

∂ µB
( ∂P

∂ µI
) = ( ∂nI

∂ µB
), wherenI is

the isospin number density [9].

5. Further implications of ISB in Heavy Ion Collisions

Correlation between conserved charges, is an experimentally measurablequantity obtained
from event-by-event analysis in heavy-ion collisions [10]. To comparewith experiments it is often
useful to consider ratios such as R2 = χBI

11/χB
2 = CBI/CBB [10, 11]. Here CXY = 1

NE
∑NE

i=1XiYi −

( 1
NE

∑NE
i=1Xi) · (

1
NE

∑NE
i=1Yi), whereNE is the total number of events considered andXi andYi are the

event variables corresponding to the conserved charges in a given event i. Ratios of this kind are
practically useful in eliminating uncertainties in the estimates of the measured volumeof the fire-
ball. The temperature variation of R2 obtained here is shown in Fig.4. It decreases monotonically
and approaches zero aboveTc. This is expected as the baryon number fluctuation increases much
more rapidly than theB− I correlation belowTc, and thereafterχBI

11 goes to zero whileχB
2 attains a

non-zero value. Them2 scaling that we observed forχBI
11 or R2 is most likely model independent as

it is expected on very general grounds for small current quark masses as discussed above. There-
fore, at any temperature and chemical potential, one can use them2 scaling to estimate the mass
asymmetry of constituent fermions in a physical system as,
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Figure 4: Ratio of B−I correlation to baryon number fluctuation atµB = 0.

m2
expt=

Rexpt
2 (T,µB)

Rth
2 (T,µB)

×m2
th (5.1)

where, ‘expt’ and ‘th’ denotes the experimentally measured and theoretically calculated values of
the corresponding quantities respectively. To the best of our knowledge this is the first theoretical
attempt which indicates that quark mass asymmetry in thermodynamic equilibrium canbe directly
measured from heavy-ion collision experiments.
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