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The hunt for axions
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Many theoretically well-motivated extensions of the Standard Model of particle physics predict
the existence of the axion and further ultralight axion-like particles. They may constitute the
mysterious dark matter in the universe and solve some puzzles in stellar and high-energy astro-
physics. There are new, relatively small experiments around the globe, which started to hunt for
these elusive particles and complement the search for physics beyond the Standard Model at the
Large Hadron Collider.
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The hunt for axions

1. Introduction

In particle physics, we are in the comfortable situation that we have a theory – the Standard
Model (SM) of particle physics – which describes all known particles and their interactions to a
remarkable precision. On the other hand, astronomical observations tell us that only about fifteen
percent of the matter in the universe is constituted by the known particles. It is one of the most ur-
gent problems of fundamental physics to understand the nature of the remaining eighty-five percent
of matter.

Theoretical particle physicists have been very imaginative to propose dark matter candidates
spanning a huge range in mass and in strength of their interactions. Among those candidates two
particular ones stick out both because of their appealing physics case and the variety of experimen-
tal probes: the neutralino – the lightest supersymmetric partner of the SM neutral gauge bosons
and the neutral Higgses – as a typical weakly interacting massive particle (WIMP) and the axion
– the pseudo Nambu-Goldstone boson arising from the breaking of a global symmetry postulated
in order to solve the strong CP problem – as a typical very weakly interacting slim (in the sense
of ultralight) particle (WISP). We will devote our attention in this short review to the latter species
(for more extended reviews, see Refs. [1, 2]).

2. Nambu-Goldstone bosons as natural WISP candidates

WISPs occur naturally in SM extensions featuring new global U(1) symmetries which are
spontaneously broken by a hidden Higgs mechanism at a symmetry breaking scale vh much larger
than the electroweak symmetry breaking scale, v = 246 GeV. In this case, the field a(x) in the
phase of the expansion of the hidden complex Higgs field about its vacuum expectation value (vev),
Hh(x) = 1√

2
(vh +hh(x))eia(x)/vh , has a flat potential, V (a)≡ const., and is thus massless, while the

field excitation hh(x) of the modulus has a large mass mh ∝ vh� v. Moreover, at energies below the
electroweak scale, the interactions of the so-called Nambu-Goldstone boson a with the SM particles
– gauge bosons (gluons with field strength G and photons with field strength F) and fermions f
(light quarks and leptons) – are suppressed by the inverse of the large symmetry breaking scale,

L =
1
2

∂µa∂
µa− αs

8π
Cag

a
fa

Gc
µνG̃c,µν − α

8π
Caγ

a
fa

Fµν F̃µν +
1
2

Ca f

fa
∂µa ψ f γ

µ
γ5ψ f , (2.1)

with model-dependent dimensionless coupling coefficients Ca j and a decay constant fa ∝ vh.
In models with Cag 6= 0, the so-called strong CP problem is solved by non-perturbative QCD

dynamics: the effective potential for a has then an absolute minimum at a = 0 and therefore the
effective theta parameter – proportional to the vev of a – vanishes [3]. The corresponding Nambu-
Goldstone boson is called the axion [4, 5]. Strictly speaking, it is a pseudo Nambu-Goldstone
boson: it gets a small mass, V (a) = 1

2 m2
aa2+O(a4), due to the same non-perturbative QCD effects,

ma =
mπ fπ

fa/Cag

√
mumd

mu +md
' 6 µeV×

(
1012 GeV

fa/Cag

)
. (2.2)

Here mπ and fπ are the neutral pion mass and decay constant, and mu and md are the masses of the
light quarks. There may be further axion-like particles (ALPs) which arise as Nambu-Goldstone
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bosons from the breaking of further well motivated global symmetries and which have no coupling
to gluons, but a non-zero coupling to photons and/or to light quarks and leptons [6]. In fact, string
theory suggests a plenitude of such ALPs [7, 8, 9, 10].

3. Axion/ALP dark matter?

For large symmetry breaking scales, axions and ALPs have lifetimes much longer than the
age of the universe and interact extremely weakly with the SM particles, qualifying them as dark
matter candidates. Indeed, they are produced in the early universe via the vacuum realignment
mechanism as a coherent state of many, extremely non-relativistic (and thus extremely cold) dark
matter particles in the form of a classical, spatially coherent oscillating field [11, 12, 13]. Today’s
(time t0) fraction of axion or ALP dark matter produced via the vacuum realignment mechanism is
proportional to the average field amplitude squared, 〈a2〉≡ f 2

a 〈θ 2
a 〉, at the time when the oscillations

started, tosc ' (3/2)m−1
a (tosc), [14]

Ra ≡
ρa

ρDM
(t0)' 0.2

√
ma(t0)

eV

√
ma(t0)

ma(tosc)

(
fa

1011 GeV

)2

〈θ 2
a 〉 . (3.1)

Here, the indicated time-dependence of the mass arises from its temperature dependence, ma(t)≡
ma(T (t)), taking into account possible plasma effects. From (3.1) it follows, that an appreciable
fraction of light axion/ALP dark matter is only expected for sufficiently large symmetry breaking
scale, fa & 1010÷12 GeV and correspondingly small couplings to SM particles (see Fig. 1).

4. Hints on axion/ALPs from astrophysics

4.1 Axion/ALP energy losses of stars?

Stringent bounds on the axion or ALP couplings to photons and electrons in a wide mass range
have been established from observations of stars in globular-clusters (GCs) [16]. These are relying
on the fact that number counts of stars in particular branches of the color-magnitude diagram of
GCs allow for detailed tests of stellar evolution. Recently, several authors have confronted new
data with improved theoretical predictions and found hints for anomalous energy losses.

A recent state-of-the-art analysis of horizontal branch, i.e. helium burning, stars in a large
sample of 39 Galactic GCs, exploiting modern stellar models, and taking into account the substan-
tial dependence of the predictions on the He mass fraction Y , found a slight indication of additional
losses which may be accounted by Primakoff-like axion/ALP emission in the Coulomb field of a
charged particle, γ +Ze→ Ze+a, if the photon coupling is in the range [17]

gaγ ≡
α

2π

Caγ

fa
= 4.5+1.2

−1.6×10−11 GeV−1 , for ma . keV. (4.1)

Conservatively, the authors of this analysis determine also an upper bound, gaγ < 6.6×10−11 GeV−1,
at 95 % confidence level (CL), which represents the strongest limit on gaγ for a wide mass range.

Clearly, the result (4.1) gives only a marginal hint for the existence of the QCD axion or an
ALP. In fact, at two sigma it is still compatible with the SM, gaγ = 0. However, there are other
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Figure 1: Current experimental constraints on the photon coupling of an axion or ALP [15]. Theoretically
and astrophysically favored regions are shown for axions within the yellow model band (classical axion
window in dark orange, mixed axion-WIMP DM in light orange, RG and WD cooling hint within the area
surrounded by the dashed blue line) and for ALPs (brown dashed line for transparency hint, below red dashed
diagonal line for ALP cold DM). Future prospects of ALPS II (above light blue line), IAXO (dashed black
region), and ADMX (dashed brown region) are also shown.

mismatches between theory and observations which may also be seen as slight indications for the
existence of a Nambu-Goldstone boson with such a coupling to the photon. One of them is the
fact that the ratio of blue to red supergiants (SGs) is smaller than predicted by stellar evolution
models. Moreover, the blue SGs appear to be less blue than expected [18]. This effect could also
be explained by an axion/ALP with gaγ = few×10−11 GeV−1 [19].

Interestingly enough, also Red Giants (RGs) in GCs mildly prefer additional energy losses, in
this case, however, due to axion/ALP emission via bremsstrahlung of axions or ALPs, e+Ze→
Ze+ e+a, pointing to an electron coupling in the range [20, 21]

gae ≡
Caeme

fa
= 1.8+0.6

−0.8×10−13 , for ma . keV. (4.2)

Still, at ∼ 2σ , the result is compatible with the SM, gae < 4.3×10−13 (95% CL).
Another astrophysical observable probing the electron coupling is the luminosity function of

white dwarfs (WDs). Intriguingly, recent analyses, based on detailed WD cooling treatment and
new data, find weak evidence that the WD luminosity function fits better with a new energy-loss
channel that can be interpreted in terms of axion/ALP losses via bremsstrahlung in electron-ion or
electron-electron collsions, requiring an electron coupling in the range gae = 1.0+0.2

−0.2× 10−13, for
ma . keV [22, 23]. This is consistent with the axion/ALP explanation of the apparent excessive
energy loss of RGs, cf. Eq. (4.2). However, also in the WD case the evidence is still rather weak:
at 2σ the WD luminosity function is consistent with the SM, gae < 2.3×10−13 (95% CL).
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Last, but not least, there is also a hint on extra energy losses of the neutron star in Cas A:
its surface temperature measured over 10 years reveals an unusually fast cooling rate. This may
be interpreted as a hint on extra cooling by axion/ALP due to nucleon bremsstrahlung, N +N →
N +N +a, requiring a coupling to the neutron of size [24]

gan ≡
Canmn

fa
∼ 4×10−10, for ma . MeV. (4.3)

Still, this can also be seen as an approximate upper limit on this coupling. In fact, recently it was
pointed out that the more rapid cooling of the superfluid core in the neutron star may also arise
from a phase transition of the neutron condensate into a multicomponent state [25].

Clearly, the evidence for each of the anomalous energy loss hints is very weak. But never-
theless, a unified picture seems to emerge: just one light, ma . keV, pseudo Nambu-Goldstone
boson with fa ∼ 108 GeV, Caγ ∼ 1, and Cae ∼Can ∼ 10−2, is required to explain at the same time
the indications from the three quite different stellar energy loss channels. Intriguingly, in LARGE
volume, V � 1, string compactifications the decay constant of closed string ALPs is generically
much smaller than the Planck scale, fa ∼ MPl/

√
V , and the matter coupling coefficients Ca f of

closed string ALPs are generically suppressed by a factor α ∼ 10−2 in comparison to the photon
coupling coefficient Caγ [10], realising the required properties.

4.2 Photon-ALP oscillations in astrophysical magnetic fields?

Photon-ALP oscillations in large-scale interstellar as well as in local magnetic fields associated
with astrophysical objects provide another sensitive probe for ALPs complementary to Primakoff
conversion in stars. However, this probe is confined to very low masses,

| m2
a−ω

2
pl |� 2gaγBE ' 2.5×neV2

( gaγ

10−11 GeV−1

)( B
µG

)(
E

GeV

)
, (4.4)

where ωpl ' 4× 1011eV
√

ne/cm3 is the plasma frequency in terms of the electron density in the
medium, while B is the magnetic field strength and E is the photon/axion/ALP energy.

In a galactic core-collapse supernova (SN), ALPs would be emitted via the Primakoff process,
and oscillate into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-
ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the
neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons,
cf. [26, 27]. Recently, this bound has been revisited and the underlying physics has been brought
to the current state-of-the-art, as far as modelling of the supernova and the Milky-Way magnetic
field are concerned, resulting in the limit gaγ < 5.3×10−12 GeV−1, for ma . 4.4×10−10 eV [28].
Therefore, the mass window for ALPs explaining the HB energy loss shrinks to neV . ma . keV.

Gamma-ray spectra from distant active galactic nuclei (AGN) should show an energy and
redshift-dependent exponential attenuation, exp(−τ(E,z)), due to e+e− pair production off the
extragalactic background light (EBL) – the stellar and dust-reprocessed light accumulated during
the cosmological evolution following the era of re-ionization. However, a number of authors [29,
30, 31] have noted that the observed spectra seem to point to an anomalous transparency of the
universe for gamma-rays at large optical depth, τ & 2, although with evidence below two sigma, if
one takes into account systematic effects (EBL spectrum, intrinsic source spectra, etc.) [32]. This
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may be explained by photon↔ ALP oscillations: the conversion of gamma rays into ALPs in the
magnetic fields around AGNs or in the intergalactic medium, followed by their unimpeded travel
towards our galaxy and the consequent reconversion into photons in the (inter)galactic magnetic
fields, requiring an ALP with gaγ & 10−(11÷12) GeV−1, for ma . 10−7 eV [29, 33, 34, 35, 36].

Intriguingly, a similar value of the photon coupling is required also for a possible explanation
of the rapidly varying very high energy (E > 50 GeV) emission from the flat spectrum radio quasar
PKS 1222+216 which represents a challenge for standard blazar scenarios: in the latter one is
forced to invoke the existence of a very compact emitting region at a large distance from the jet
base, in order to avoid absorption of gamma rays in the dense ultraviolet radiation field of the
broad line region. In ref. [37] it was shown that one can also use a standard blazar model for PKS
1222+216 where gamma rays are produced close to the central engine, if one assumes that inside
the source photons can oscillate into ALPs. Moreover, the required photon coupling overlaps with
the preferred region from the anomalous energy losses of helium burning starts in globular clusters.

Finally, it was found that observed soft X-ray excesses in many galaxy clusters may be ex-
plained by the conversion of a cosmic ALP background (CAB) radiation, corresponding to an
effective number4Neff of extra neutrinos, into photons in the cluster magnetic fields [38, 39, 40].
This explanation requires that the CAB spectrum is peaked in the soft X-ray region and that the
ALP coupling and mass satisfy gaγ & (1÷2)×10−13 GeV−1

√
0.5/4Neff, for ma . 10−12 eV.

5. The experimental hunt for the axion and ALPs

We have seen that there is a strong physics case for the axion and other ALPs arising as Nambu-
Goldstone bosons from the breaking of a symmetry at a scale fa ∼ 108÷12 GeV. Fortunately, such
WISPs are in reach of a number of experiments which are presently carried out or being set up.

5.1 Light-shining-through-a-wall searches

Light-Shining-Through-Wall (LSW) experiments aim both for production and detection of ax-
ions and ALPs in the laboratory. This is done by sending laser photons along a strong magnetic
field, allowing for their conversion into axions or ALPs, towards a blocking wall, behind of which
the latter may then reconvert, again in a strong magnetic field, into photons, the latter being sus-
ceptible to detection (for a review, see [41]). The Any Light Particle Search (ALPS) experiment
at DESY and OSQAR at CERN share currently the best sensitivity of LSW experiments [42, 43].
ALPS II [44] proposes to use 10+10 straightened HERA magnets, a high-power laser system, a
superconducting low-background detector and the pioneering realization of an optical regeneration
cavity [45, 46]. It aims to crucially test the ALP explanation of the excessive helium burning star
energy loss and of the anomalous cosmic gamma ray transparency, cf. Fig. 1.

5.2 Helioscope searches

Helioscopes aim to detect solar axions and ALPs produced by their conversion into photons in-
side of a strong magnet pointing towards the Sun [47]. The CERN Axion Solar Telescope (CAST),
employing an LHC dipole test magnet, sets currently the best helioscope limit [48, 49]. A proposed
next-generation axion helioscope, dubbed the International Axion Observatory (IAXO), envisions
a dedicated superconducting toroidal magnet with much bigger aperture than CAST, a detection
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system consisting of large X-ray telescopes coupled to ultra-low background X-ray detectors, and
a large, robust tracking system [50]. It aims at the sensitivity shown in Fig. 1. It will crucially
test the axion explanation of the energy losses of helium burnng stars, red giants, white dwarfs
and the neutron star in Cas A, and of the ALP explanation of the anomalous cosmic gamma ray
transparency. Futhermore, it scratches also the parameter region required to explain the soft X-ray
excess from galaxy clusters.

5.3 Direct axion/ALP dark matter searches

5.3.1 Haloscopes

Haloscopes directly search for galactic halo dark matter axions and ALPs in the laboratory
via their coupling to the photon. Currently, the most sensitive ones exploit electromagnetic cavites
placed in a strong magnet [47]. They aim for the detection of electromagnetic power arising from
the conversion of dark matter axions or ALPs into real photons, with frequency ν = ma/(2π) =

0.24 GHz× (ma/µeV). The best sensitivity is reached on resonance, the power output then being
proportional to the quality factor of the cavity. The Axion Dark Matter eXperiment (ADMX)
has indeed reached recently the sensitivity to probe axion dark matter [51] (see Fig. 1). Further
microwave cavity based haloscope opportunities in complementary mass ranges may arise from
recycling available microwave cavities and magnets at accelerator laboratories [52].

Other new concepts for haloscopes are also being investigated. A microwave Fabry-Perot
resonator in a spatially varying magnetic field may be exploited to search for axion/ALP dark
matter with masses above 40 µeV [53]. Converted photons from axion/ALP dark matter could be
focused in a manner similar to a dish antenna, allowing for broad-band searches [54].

5.3.2 Magnetic resonance searches

Axion dark matter produced via the misalignment mechanism gives all nucleons oscillating
electric dipole moments (EDMs). These EDMs cause the precession of nuclear spins in a nucleon
spin polarized sample in the presence of an electric field. The resulting transverse magnetisation
can be searched for exploiting magnetic resonance (MR) techniques [55]. The aim of the corre-
sponding Cosmic Axion Spin Precession Experiment (CASPEr) in Mainz is to probe axion dark
matter in the anthropic window, corresponding to GUT to Planck scale symmetry breaking scale
fa ∼ 1015÷18 GeV, complementary to the classic axion window probed by ADMX.

The axion/ALP nucleon coupling will also lead to a spin precession about the axion/ALP DM
wind, even without the presence of an electric field. Therefore, CASPEr can also be exploited
to search for the magnetisation due to this effect [56]. Unfortunately, in this case the projected
sensitivity does not reach the axion prediction.

Finally, also the axion/ALP electron coupling [57, 58] will lead to a spin precession about the
axion/ALP DM wind. The QUAX (QUaerere AXions) experiment in preparation in Italy by INFN
aims to exploit magnetic resonance (MR) inside a magnetized material [59]. Because of the higher
Larmor frequency of the electron, it extends the sensitivity to higher masses.
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6. Summary

There is a strong physics case for the axion and ALPs. They occur naturally in many theoreti-
cally appealing ultraviolet completions of the SM. They are dark matter candidates and can explain
the hints for an excessive energy loss of stars and for an anomalous transparency of the universe
for TeV photons. A significant portion of their parameter space will be tackeled in this decade by
experiments. Stay tuned!
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