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I discuss dynamical generation of neutrino masses in unconventional scenarios where the back-
ground space-time geometry plays a crucial role. I discuss two types of backgrounds: (i) Lorentz
Violating and (ii) Geometries with Torsion. In the former case, the violation of Lorentz symme-
try, at a scale M, may be viewed as a catalyst for mass generation and induced flavour oscillations
among neutrino species, which survive the limit of M taken to infinity, leading to a hierarchy
among neutrino masses. In the latter case, the (totally antisymmetric components of the) torsion
degrees of freedom correspond to a pseudoscalar axion field in four space-time dimensions. This
field is assumed to be mixed, through non-diagonal kinetic terms, with ordinary axion fields that
may exist in the theory for other reasons and couple to neutrinos with chirality changing Yukawa
couplings. The torsion-ordinary-axion-field mixing is responsible, through higher-loop anoma-
lous graphs, for the dynamical generation of Majorana masses. The latter scenarios can also be
realised in some (compactified) string theory models, where the (totally antisymmetric) torsion
is played by the field strength of the spin-one antisymmetric tensor (Kalb-Ramond) field, which
exists in the gravitational string multiplet.
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1. Introduction and Summary

The discovery [1] of the Higgs boson at the CERN Large Hadron Collider (LHC) in 2012 con-
stitutes an important milestone for the Ultra-Violet (UV) completion of the Standard Model (SM).
Although the so-called Higgs mechanism may well explain the generation of most of the particle
masses in the SM, the origin of the small neutrino masses still remains an open issue. In particular,
the observed smallness of the light neutrino masses may naturally be explained through the see-saw
mechanism [2], which necessitates the Majorana nature of the light (active) neutrinos and postu-
lates the presence of heavy right-handed Majorana partners of mass MR. The right-handed Majo-
rana mass MR is usually considered to be much larger than the lepton or quark masses. The origin
of MR has been the topic of several extensions of the SM in the literature, within the framework
of quantum field theory [2, 3] and string theory [4]. However, up to now, there is no experimental
evidence for right-handed neutrinos or for any extension of SM, as a matter of fact, although some
optimism of discovering supersymmetry in the next round of LHC (operating at 14 TeV energies)
exists among particle physicists.

Until therefore such extensions of the SM are discovered, it is legitimate to search for alterna-
tive mechanisms for neutrino mass generation, that keep the spectrum of SM intact, except perhaps
for the existence of right handed neutrinos that are allowed. Such minimal, non supersymmetric ex-
tensions of the Standard Model with three in fact right-handed Majorana neutrinos complementing
the three active left-handed neutrinos (termed νMSM), have been proposed [5], in a way consistent
with current cosmology. Such models are characterised by relatively light right-handed neutrinos,
two of which are almost degenerate, with masses of order GeV, and a much lighter one, almost
decoupled, with masses in the keV range, which may play the role of warm dark matter. The
right-handed neutrinos serve the purpose of generating, , through seesaw type mechanisms, the
active neutrino mass spectrum, consistent with observed flavour oscillations. However, there are
no suggestions for microscopic mechanisms for the generation of the right-handed neutrino mass
spectrum in such scenarios.

Motivated by these facts we review in this talk alternative proposals for neutrino mass gen-
eration, through the interaction of neutrinos with non-trivial backgrounds. We examine two such
types of backgrounds. The first [6], to be discussed in section 2, violates Lorentz symmetry spon-
taneously. The background is of a type existing in the so-called Lorentz-Violating (LV) Standard
Model Extension (SME) of Kostelecky and collaborators [7]; it can be associated (but this is only
one example) with some string/brane models of the Universe, in which our four space-time dimen-
sional brane world propagates in a bulk punctured by populations of point-like D-brane defects,
interacting with right-handed neutrinos [8]. The second proposal for dynamical generation of neu-
trino masses concerns their propagation in space-time geometries with quantum-fluctuating tor-
sion [9] and is discussed in section 3. The totally antisymmetric part of the torsion couples, via the
gravitational covariant derivative, to all fermions in a way that the resulting interaction resembles
that of the Lorentz and CPT-Violating pseudovector background with the axial fermion current in
the SME. The generation of (right-handed, sterile) neutrino masses in that case proceeds, as we
shall review below, via chiral anomalous three-loop graphs of neutrinos interacting with the totally
antisymmetric torsion quantum field. In four space-time dimensions, the latter is represented as
an axion field, whose mixing with ordinary axion fields, that in turn interact with the Majorana
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right-handed neutrinos via chirality changing Yukawa couplings, is held responsible for the right-
handed Majorana neutrino mass generation through the aforementioned anomalous graphs. This
latter scenario may be motivated by some string-inspired proposals [10] for leptogenesis induced
by the torsion background in geometries of the early universe, which we do not discuss here, due
to lack of space. The totally antisymmetric torsion in such cases corresponds to the field strength
of the spin-one antisymmetric tensor (Kalb-Ramond) field of the string gravitational multiplet.

2. Neutrino Mass Generation due to propagation in Lorentz Violating Backgrounds

The model to be considered in this part of the talk is defined by the two-flavour fermion
Lagrangian

L2 = Ψ̄

[
i(∂0γ

0−~∂ ·~γ)
(

1− ∆

M2

)
+

∆

M

]
Ψ+

1
M2 (ΨτΨ)2, (2.1)

where Ψ =

(
ψ1

ψ2

)
is a fermion flavour doublet, with bare mass zero, and

τ =

(
g1 g3

g3 g2

)
, (2.2)

is the (dimensionless) interaction coupling matrix. The mass scale M is used both to control the LV
scale and the strength of the four-fermion interaction 1. We shall argue that in this model fermion
masses and flavour oscillations are generated dynamically.

The model belongs to an SME of the type

LSME = ψ
(
i/∂ −m+Q

)
ψ , (2.3)

where Q contains the LV terms, and can be expanded on a basis of gamma matrices Q = A+ iBγ5+

Cµγµ +Dµγµγ5 +Eµνσ µν , with σ µν = 1
4 [γ

µ .γν ]. The (tensorial) quantities A,B,Cµ ,Dµ ,Eµν may
contain any number of derivatives, including terms which are either odd or even under the discrete
symmetry CPT. The different coefficients associated with these terms can arise from vacuum ex-
pectation values (vev) of tensors of different ranks, and should satisfy upper bounds for Lorentz
symmetry violation, imposed by experiments [7]. The model (2.1) corresponds to the specific case
A = b

M ∆ , C0 = −i a
M2 ∆∂0 , ~C = −i c

M2 ∆~∂ , B = Dµ = Eµν = 0, where a,b,c are dimensionless

constants (a > 0 and c > 0), such that Q =−i∂0γ0 a
M2 ∆+ i~∂ ·~γ

(
i b

M
~∂ ·~γ + c

M2 ∆

)
. The relevant case

for our study corresponds to non-vanishing coefficients a,b,c, which leads [6] to a quasi-relativistic
dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not
in an intermediate regime, characterized by the mass scale M, and the absence of critical coupling
for the generation of dynamical mass.

The choice (2.1) is motivated by a gravitational microscopic model, based on the low-energy
limit of a string theory on a three brane universe, which is embedded, from an effective three-
brane observer view point, in a bulk space-time punctured with point-like defects (D-particles) [8].

1When applied to right-handed neutrinos, and in cases, such as the νMSM [5], where the lightest of them (of keV
mass) plays the role of dark matter, the four fermion interactions provide an example of self-interacting dark matter,
which may play an important rôle in galactic structure [11].
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Non-trivial interactions of D-particles with stringy matter occur only for such matter that does not
carry standard model quantum numbers, and from this point of view right-handed sterile neutrinos
constitute perfect candidates. As shown in [6], this model provides an elegant construction of
the LV operator Q from a fundamental theory, which allows the generation of the operator Q in
a natural way. In this microscopic context, the Lorentz symmetric limit M→ ∞, which we shall
consider in this work and by means of which one views the LV as a catalyst of mass generation,
follows when the density of D-particles becomes vanishingly small.

To study dynamical generation of fermion masses, we introduce a Yukawa coupling of fermions
to an auxiliary field φ , which is used for the linearisation of the four-fermion interactions in (2.1),
integrate over the fermions in a path integral, and look for a non-trivial minimum for the effective
potential V (φ). This leads to a mass term in the original Yukawa interaction. This approach ne-
glects fluctuations of the auxiliary field about its vacuum expectation value (vev), but these can be
omitted in the limit g2→ 0, which characterises the Lorentz symmetric limit 2.

The Lagrangian containing the auxiliary field, equivalent to the original Lagrangian (2.1),
reads

L ′
2 = Ψ̄

[
i(∂0γ

0−~∂ ·~γ)
(

1− ∆

M2

)
+

∆

M

]
Ψ−M2

4
φ

2−φΨτΨ . (2.4)

Integrating over fermions, we obtain the effective potential for the auxiliary field φ [6] V2 =
M2

4 φ 2+

i tr
∫ d4 p

(2π)4 (lnλ++ lnλ−), where λ±= (ωγ0−~p ·~γ)(1+ p2/M2)− p2/M−h±φ , ω is the frequency,

p≡ |~p|, and h± = 1
2(g1 +g2)± 1

2

√
(g1−g2)2 +4g2

3 are the eigenvalues of the coupling matrix.

Minimization (dV2/dφ)
∣∣∣
φ=〈φ〉≡φ2

= 0 leads to a gap equation for the fermion masses

M2

2
φ2 = ∑

s=+,−

hs

π3

∫
p2d p

∫
dω

[
(hsφ2 + p2/M)

(ω2 + p2)(1+ p2/M2)2 +(hsφ2 + p2/M)2

]
. (2.5)

From (2.5) it follows that the dynamically generated mass matrix M = φ2τ (cf. (2.4)) reads in the
(Lorentz-symmetric) limit of small couplings gi� 1 we are interested in here,

M ' 0.018(g1 +g2)M

(
g1 g3

g3 g2

)
. (2.6)

The mass eigenvalues m± = φ2h± and the mixing angle θ are then given by

m± = 0.009M
[
(g1 +g2)

2±
√

(g2
1−g2

2)
2 +4g2

3(g1 +g2)2

]

tanθ =
g1−g2

2g3
+

√
1+
(

g1−g2

2g3

)2

. (2.7)

2In terms of the microscopic, string-inspired model [8], the coupling is proportional to the density of D-particle
defects, and hence its vanishing is consistent with the simultaneous limit M→ ∞, since M is inversely proportional to
the defects density. Hence the Lorentz symmetric limit of that model corresponds to vanishing D-particle-defect density.
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From this we can express the dimensionless couplings gi as

g1 =
µ++µ−+(µ+−µ−)cos(2θ)

2
√

α(µ++µ−)
, (2.8)

g2 =
µ++µ−− (µ+−µ−)cos(2θ)

2
√

α(µ++µ−)
,

g3 =
µ−−µ+

2
√

α(µ++µ−)
sin(2θ) ,

where µ± = m±
M . Therefore one can write the couplings gi in the form

gi =
ai√
M

, i = 1,2,3 , (2.9)

where the constants ai are kept finite and are fixed by the “experimental” (in case of realistic mod-
els) values of m± and θ . This expression shows the explicit dependence of the couplings gi on
the scale M, for the Lorentz symmetric limit M → ∞ to be taken, in such a way that we are left
with two relativistic free fermions, for which flavour oscillations have been generated dynamically.
Therefore any set of values for m± and θ can be described by the Lorentz-symmetric limit of our
model, by considering the coupling constants (2.8).

The model can be straightforwardly extended to Majorana fermions, as well as three genera-
tions of fermions, including seesaw type Lagrangians, where by a judicious choice of the appro-
priate couplings one can generate, in the Lorentz-symmetric limit, (right-handed) neutrino mass
hierarchies of relevance, e.g. to νMSM and warm dark matter studies [5].

3. Neutrino Mass Generation due to Interactions with Quantum Torsion

Let us for concreteness consider Dirac fermions in a torsionful space-time. The extension to
the Majorana case is straightforward. The relevant action reads:

Sψ =
i
2

∫
d4x
√
−g
(

ψγ
µDµψ− (Dµψ)γµ

ψ

)
(3.1)

where Dµ = ∇µ + . . . , is the covariant derivative (including gravitational and gauge-field con-
nection parts, in case the fermions are charged). The overline above the covariant derivative,
i.e. ∇µ , denotes the presence of torsion, which is introduced through the torsionful spin connection:
ωabµ = ωabµ +Kabµ , where Kabµ is the contorsion tensor. The latter is related to the torsion two-

form Ta = d ea +ω
a∧ eb via [12, 13]: Kabc =

1
2

(
Tcab−Tabc−Tbcd

)
. The presence of torsion in

the covariant derivative in the action (3.1) leads, apart from the standard terms in manifolds without
torsion, to an additional term involving the axial current

Jµ

5 ≡ ψγ
µ

γ
5
ψ . (3.2)

The relevant part of the action reads:

Sψ 3 −
3
4

∫
d4√−gSµψγ

µ
γ

5
ψ =−3

4

∫
S∧ ?J5 (3.3)
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where S = ?T is the dual of T: Sd = 1
3! ε

abc
dTabc.

We next remark that the torsion tensor can be decomposed into its irreducible parts [12], of
which Sd is the pseudoscalar axial vector: Tµνρ = 1

3

(
Tνgµρ −Tρgµν

)
− 1

3! εµνρσ Sσ + qµνρ , with
εµνρσ qνρσ = qν

ρν = 0. This implies that the contorsion tensor undergoes the following decompo-
sition:

Kabc =
1
2

εabcdSd + K̂abc (3.4)

where K̂ includes the trace vector Tµ and the tensor qµνρ parts of the torsion tensor.

The gravitational part of the action can then be written as: SG = 1
2κ2

∫
d4x
√
−g
(

R+ ∆̂

)
+

3
4κ2

∫
S∧ ?S, where ∆̂ = K̂λ

µν K̂νµ

λ
− K̂µν

ν K̂ λ

µλ
, with the hatted notation defined in (3.4).

In a quantum gravity setting, where one integrates over all fields, the torsion terms appear
as non propagating fields and thus they can be integrated out exactly. The authors of [13] have
observed though that the classical equations of motion identify the axial-pseudovector torsion field
Sµ with the axial current, since the torsion equation yields

Kµab =−
1
4

ec
µεabcdψγ5γ̃

d
ψ . (3.5)

From this it follows d ?S = 0, leading to a conserved “torsion charge” Q =
∫
?S. To maintain

this conservation in quantum theory, they postulated d ?S = 0 at the quantum level, which can be
achieved by the addition of judicious counter terms. This constraint, in a path-integral formulation
of quantum gravity, is then implemented via a delta function constraint, δ (d ?S), and the latter via
the well-known trick of introducing a Lagrange multiplier field Φ(x)≡ (3/κ2)1/2b(x). Hence, the
relevant torsion part of the quantum-gravity path integral would include a factor

Z ∝

∫
DSDb exp

[
i
∫ 3

4κ2 S∧ ?S− 3
4

S∧ ?J5 +
( 3

2κ2

)1/2
bd?S

]
=
∫

Db exp
[
− i
∫ 1

2
db∧ ?db+

1
fb

db∧ ?J5 +
1

2 f 2
b

J5∧ ?J5
]
,

(3.6)

where fb = (3κ2/8)−1/2 = MP√
3π

and the non-propagating S field has been integrated out. The reader
should notice that, as a result of this integration, the corresponding effective field theory contains
a non-renormalizable repulsive four-fermion axial current-current interaction, characteristic of any
torsionful theory [12].

The torsion term, being geometrical, due to gravity, couples universally to all fermion species,
not only neutrinos. Thus, in the context of the SM of particle physics, the axial current (3.2) is
expressed as a sum over fermion species

Jµ

5 ≡ ∑
i=fermion species

ψ iγ
µ

γ
5
ψi . (3.7)

In theories with chiral anomalies, like the quantum electrodynamics part of SM, the axial current is
not conserved at the quantum level, due to anomalies, but its divergence is obtained by the one-loop
result [14]:

∇µJ5µ =
e2

8π2 Fµν F̃µν −
1

192π2 Rµνρσ R̃µνρσ

≡ G(A,ω) . (3.8)
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We may then partially integrate the second term in the exponent on the right-hand-side of (3.6) and
take into account (3.8). The reader should observe that in (3.8) the torsion-free spin connection has
been used. This can be achieved by the addition of proper counter terms in the action [13], which
can convert the anomaly from the initial G(A,ω) to G(A,ω). Using (3.8) in (3.6) one can then
obtain for the effective torsion action in theories with chiral anomalies, such as the QED part of the
SM:

∫
Db exp

[
− i
∫ 1

2
db∧ ?db− 1

fb
bG(A,ω)+

1
2 f 2

b
J5∧ ?J5

]
. (3.9)

A concrete example of torsion is provided by string-inspired theories, where the totally antisymmet-
ric component Sµ of the torsion is identified with the field strength of the spin-one antisymmetric
tensor (Kalb-Ramond (KR) [15]) field Hµνρ = ∂[µBνρ], where the symbol [. . . ] denotes antisym-
metrization of the appropriate indices. The string theory effective action depends only on Hµνρ

as a consequence of the “gauge symmetry” Bµν → Bµν + ∂[µΘν ] that characterises all string the-
ories. It can be shown [16] that the terms of the effective action up to and including quadratic
order in the Regge slope parameter α ′, of relevance to the low-energy (field-theory) limit of string
theory, which involve the H-field strength, can be assembled in such a way that only torsionful
Christoffel symbols, Γ

µ

νρ appear: Γ
µ

νρ = Γ
µ

νρ + κ√
3

Hµ

νρ 6= Γ
µ

ρν , where Γ
µ

νρ = Γ
µ

ρν is the ordi-
nary, torsion-free, symmetric connection, and κ is the gravitational constant. In four space-time
dimensions, the dual of the H-field is indeed the derivative of an axion-like field, analogous to the
field b above. For completeness we mention at this point that background geometries with (approx-
imately) constant background Hi jk torsion, where Latin indices denote spatial components of the
four-dimensional space-time, may characterise the early universe. In such cases, the H-torsion
background constitutes extra source of CP violation, necessary for lepotogenesis, and through
Baryon-minus-Lepton-number (B-L) conserving processes, Baryogenesis, and thus the observed
matter-antimatter asymmetry in the Universe [10]. Today of course any torsion background should
be strongly suppressed, due to the lack of any experimental evidence for it. Scenarios as to how
such cosmologies can evolve so as to guarantee the absence of any appreciable traces of torsion
today can be found in [10].

In what follows we shall consider the effects of the quantum fluctuations of torsion, which
survive the absence of any torsion background. An important aspect of the coupling of the torsion
(or KR axion) quantum field b(x) to the fermionic matter discussed above is its shift symmetry,
characteristic of an axion field. Indeed, by shifting the field b(x) by a constant: b(x)→ b(x)+ c,
the action (3.9) only changes by total derivative terms, such as cRµνρσ R̃µνρσ and cFµν F̃µν . These
terms are irrelevant for the equations of motion and the induced quantum dynamics, provided the
fields fall off sufficiently fast to zero at space-time infinity. The scenario for the anomalous Majo-
rana mass generation through torsion proposed in [9], and reviewed here, consists of augmenting
the effective action (3.9) by terms that break such a shift symmetry. To illustrate this last point, we
first couple the KR axion b(x) to another pseudoscalar axion field a(x). In string-inspired models,
such pseudoscalar axion a(x) may be provided by the string moduli [17]. The proposed coupling
occurs through a mixing in the kinetic terms of the two fields. To be specific, we consider the action
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(henceforth we restrict ourselves to right-handed Majorana neutrino fermion fields)

S =
∫

d4x
√
−g
[1

2
(∂µb)2 +

b(x)
192π2 fb

Rµνρσ R̃µνρσ +
1

2 f 2
b

J5
µJ5µ

+ γ(∂µb)(∂ µa)+
1
2
(∂µa)2

−yaia
(

ψ
C

R ψR−ψRψ
C

R

)]
, (3.10)

where ψ C
R = (ψR)

C is the charge-conjugate right-handed fermion ψR, J5
µ = ψγµγ5ψ is the axial

current of the four-component Majorana fermion ψ = ψR +(ψR)
C, and γ is a real parameter to be

constrained later on. Here, we have ignored gauge fields, which are not of interest to us, and the
possibility of a non-perturbative mass Ma for the pseudoscalar field a(x). Moreover, we remind
the reader that the repulsive self-interaction fermion terms are due to the existence of torsion in the
Einstein-Cartan theory. The Yukawa coupling ya of the axion moduli field a to right-handed sterile
neutrino matter ψR may be due to non perturbative effects. These terms break the shift symmetry:
a→ a+ c.

It is convenient to diagonalize the axion kinetic terms by redefining the KR axion field as
follows: b(x)→ b′(x)≡ b(x)+ γa(x). This implies that the effective action (3.10) becomes:

S =
∫

d4x
√
−g
[1

2
(∂µb′)2 +

1
2

(
1− γ

2
)
(∂µa)2

+
1

2 f 2
b

J5
µJ5µ

+
b′(x)− γa(x)

192π2 fb
Rµνρσ R̃µνρσ − yaia

(
ψ

C
R ψR−ψRψ

C
R

)]
. (3.11)

Thus we observe that the b′ field has decoupled and can be integrated out in the path integral,
leaving behind an axion field a(x) coupled both to matter fermions and to the operator Rµνρσ R̃µνρσ ,
thereby playing now the rôle of the torsion field. We observe though that the approach is only valid
for |γ| < 1 , otherwise the axion field would appear as a ghost, i.e. with the wrong sign of its kinetic
terms, which would indicate an instability of the model. This is the only restriction of the parameter
γ . In this case we may redefine the axion field so as to appear with a canonical normalised kinetic
term, implying the effective action:

Sa =
∫

d4x
√
−g
[1

2
(∂µ a)2− γa(x)

192π2 fb
√

1− γ2
Rµνρσ R̃µνρσ

− iya√
1− γ2

a
(

ψ
C

R ψR−ψRψ
C

R

)
+

1
2 f 2

b
J5

µ J5µ
]
. (3.12)

Evidently, the action Sa in (3.12) corresponds to a canonically normalised axion field a(x), coupled
both to the curvature of space-time, à la torsion, with a modified coupling γ/(192π2 fb

√
1− γ2),

and to fermionic matter with chirality-changing Yukawa-like couplings of the form ya/
√

1− γ2.
The mechanism for the anomalous Majorana mass generation is shown in Fig. 1. We may now

estimate the two-loop Majorana neutrino mass in quantum gravity with an effective UV energy cut-
off Λ. Adopting the effective field-theory framework of [18], the gravitationally induced Majorana
mass for right-handed neutrinos, MR, is estimated to be:

MR ∼
1

(16π2)2
ya γ κ4Λ6

192π2 fb(1− γ2)
=

√
3ya γ κ5Λ6

49152
√

8π4(1− γ2)
. (3.13)

In a UV complete theory such as strings, the cutoff Λ and the Planck mass scale MP are related.
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Figure 1: Typical Feynman graph giving rise to anomalous fermion mass generation [9]. The black circle
denotes the operator a(x)Rµνλρ R̃µνλρ induced by torsion. The fields hµν denote graviton fluctuations.

It is interesting to provide a numerical estimate of the anomalously generated Majorana mass
MR. Assuming that γ � 1, the size of MR may be estimated from (3.13) to be

MR ∼ (3.1×1011 GeV)

(
ya

10−3

) (
γ

10−1

)(
Λ

2.4×1018 GeV

)6

. (3.14)

Obviously, the generation of MR is highly model dependent. Taking, for example, the quantum
gravity scale to be Λ = 1017 GeV, we find that MR is at the TeV scale, for ya = 10−3 and γ = 0.1.
However, if we take the quantum gravity scale to be close to the GUT scale, i.e. Λ = 1016 GeV,
we obtain a right-handed neutrino mass MR ∼ 16 keV, for the choice ya = γ = 10−3. This is in the
preferred ballpark region for the sterile neutrino ψR to qualify as a warm dark matter [19].

In a string-theoretic framework, many axions might exist that could mix with each other [17].
Such a mixing can give rise to reduced UV sensitivity of the two-loop graph shown in Fig. 1. In
such cases, the anomalously generated Majorana mass may be estimated to be:
MR ∼

√
3ya γ κ5Λ6−2n(δM2

a )
n

49152
√

8π4(1−γ2)
for n≤ 3, and MR ∼

√
3ya γ κ5(δM2

a )
3

49152
√

8π4(1−γ2)

(δM2
a )

n−3

(M2
a )

n−3 for n > 3.
It is then not difficult to see that three axions a1,2,3 with next-to-neighbour mixing as discussed

above would be sufficient to obtain a UV finite result for MR at the two-loop level. Of course,
beyond the two loops, MR will depend on higher powers of the energy cut-off Λ, i.e. Λn>6, but if
κΛ� 1, these higher-order effects are expected to be subdominant.

In the above n-axion-mixing scenarios, we note that the anomalously generated Majorana
mass term will only depend on the mass-mixing parameters δM2

a of the axion fields and not on
their masses themselves, as long as n ≤ 3. As a final comment we mention that the values of the
Yukawa couplings ya may be determined by some underlying discrete symmetry [20], which for
instance allows two of the right-handed neutrinos to be almost degenerate in mass, as required for
enhanced CP violation of relevance to leptogenesis [10], or in general characterises the νMSM [5].
These are interesting issues that deserve further exploration.
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