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flares on a millisecond time scale. As the IBIS detector uses a coded mask, localisation of those
flares is hindered by low count statistics in the deconvolution process. Here, selected flares are
used as input for further data processing. Machine learning clustering algorithms and a search
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1. Introduction

The IBIS/ISGRI γ-ray imager (20 keV− 1 MeV) [1] on-board the ESA INTEGRAL satel-
lite [2] has observed many short transients, including short gamma-ray bursts (sGRBs) [3] and
soft gamma-ray repeaters (SGRs) [4] flares as they were triggered by the on-board burst alert sys-
tem (IBAS) [5]. The standard data analysis pipeline OSA that performs deconvolution with the
IBIS/ISGRI coded mask pattern has issues in reconstructing an image and subsequently a light
curve for time intervals . 1 s because of the low count statistics per pixel. Therefore, an alter-
native approach, sensitive to the sudden short time excesses in the count rate above the real-time
background on the detector in a Science Window1 (ScW) has been used to detect short flare candi-
dates [6].

2. Observational Data

The INTEGRAL observations with the total exposure time & 64 Ms (& Terabytes of data),
obtained in the period from Oct 2002 to Nov 2013, were processed. The search in the energy
range 15− 150 keV revealed & 4× 104 flare candidates with the count rate at least 10σ above
the background on 10 ms time-scale, having passed hot pixel, cosmic ray and solar flare rejection
filters. Due to the missing positional and detailed spectral information, the origin of these flares
is mostly unknown. On the contrary, the nature of flares is well-assigned for the sGRBs that
triggered IBAS and also for known active flaring periods of some SGRs. There are 46 SGR flares
associated with SGR J1550-5418 (in October 2008 and first half of 2009) [7] and SGR 1806 [8, 9]
and 4 sGRBs2 (GRB 070707, GRB 071017, GRB 081226B, GRB 110112A) for which the data are
publicly available and for which the light curve is long enough to have structure (> 30 ms) that can
be used for the analysis. For each selected flare, set of representative attributes characterising the
spectral, temporal and contextual information about the flares were recorded. The attributes, often
called features, serve as the input data for the analysis. They are summarised in Table 1.

3. Data Analysis

3.1 Machine Learning

In the analysis described here, it is assumed that the found flares are either sGRBs or SGRs.
The task is to distinguish between these two classes of objects when we observe a flare. The sGRB
and SGR sources are of different origin and different physical processes may play dominant role
during the flare emission. Therefore, a pattern to discriminate sGRBs from SGRs in the quick look
analysis may likely exist, though it is not known. The advantage of applying machine learning
is that distinguishing between the source classes in a reasonable manner is possible even without
the knowledge what the true pattern is. Typically, when the class labels (sGRB or SGR in this
case) of a good number of the observed flares are known, so called supervised learning is applied
to train the classification algorithm on known examples. However, the small number of known

1The INTEGRAL observations are composed of observational blocks called Science Windows (ScWs), each of a
typical duration ∼ 30 minutes.

2http://ibas.iasf-milano.inaf.it/IBAS_Results.html
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Table 1: List of features recorded for each identified flare. For certain quantities, the subscript x is an
abbreviation for three energy ranges, x ∈ 15−150, 15−50 and 50−200 keV bands.

Feature name Description

Spectral properties
max_sig maximal significance in σ above background in the flare
fluencex total fluence (in counts) in the flare in 15−150 keV
h2s hard to soft ratio between 15-50 keV and 50-200 keV
spectral lag shift of the maxima between 50−200 keV and 15−50 keV
Light curve
duration total duration of the flare in 15−150 keV
variabilityx normalised variance per pixel to average variance per pixel in a given ScW
bg_jump the count difference between the first and last point of the flare
pσ ,x the relative fraction of the points above 10σ detection threshold
Pulse shape
asymmetry rise time to decay time ratio
half-symmetry mirror difference folded around midpoint
madx median absolute deviation
stdx, skewx, kurtosisx higher moments
Contextual
Time Date and time of the pulse start
RA Right Ascension of the current pointing
decl Declination of the current pointing
# neighbours # of pulses with the signif. ≥ 10σ above the background within the same ScW
bg_ mean average background level in the ScW
bg_ var background variations in the ScW
Galactic localised within ±15◦ from the Galactic plane
GTI flag Flare occurred within GTI

sGRBs in the entire studied sample (4) would make the supervised learning strongly biased and
inefficient. The highly unbalanced class abundance would result in high 42/46 = 91% overall
classification accuracy if the majority class of SGRs were predicted primitively in all cases. This
approach would fail to find any sGRB. Therefore, unsupervised learning, for which labels are not
known or ignored, is used to detect clusters in the N-dimensional vector space in which each flare
is represented by a vector built from the flare features. Thus, each dimension corresponds to one
of the features (e.g. duration or variability etc.) The Euclidean distances between the points in
this space are calculated and the techniques of K-mean and spectral clustering algorithms are used
to detect clusters of points, assuming that nearby points (representing flares) would likely be of
similar origin. Besides it, an additional test in which sGRBs are considered to be outliers from the
SGR class, is performed [10, 11].

3.2 Dimensionality Reduction

Besides the high CPU demands, the initial high dimensionality of the vector space of the flare
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features can confuse the algorithm by noisy dimensions – the dimensions that represent features
with no or very low relevancy for the classification itself. Moreover, the aggregating clustering
methods can suffer from the “curse of dimensionality” degeneracy in d-dimensional space where
d & 10.

Much of the contextual information is not relevant to the classification purpose. Therefore,
only the logarithm of the number of flares in the neighbourhood and boolean flag whether a flare is
close to the Galactic plane are kept. To smear off the importance of these two contextual features
further down, the distance in these two dimensions is suppress by factor of 10 when calculating the
metrics. To remove unwanted redundancy, only one feature in any highly correlated pair of features
(by means of the Pearson correlation coefficient |r|> 0.3) is kept.

The principle component analysis (PCA) projection is often efficiently used to lower the di-
mensionality of the problem. However, PCA detects a linear combination of features with the
largest variance, rather than emphasises the feature of the highest importance for the classification
task. Therefore, the supervised machine learning algorithm of Random Forests is used here to
score the features importance based of their relevance to the classification. While the simple deci-
sion tree algorithm recursively divides the vector space to achieve the best possible class splitting,
Random forest is a Monte Carlo ensemble algorithm that tackles the over-fitting problem that is
often encounter in the classical decision tree classifier. In the Random forest algorithm, a large
number of randomly perturbed decision trees are generated with one of the features missing. The
result is then averaged over many tosses. Higher classification accuracy with the feature missing
statistically implies lower significance of the omitted feature. The results of the feature importance
are shown in Fig. 1. The first 8 most significant features are used for the clustering analysis. This
covers ∼ 70% of the overall information in the input dataset.

3.3 K-Mean Clustering

K-mean clustering is a simple but powerful algorithm. The iterative algorithm is described in
the caption of Fig. 2. To unify the scales in each dimension, the input data are normalised to have
zero mean and unit standard deviation.

The number of clusters must be fixed a priori. Two clusters are expected by the nature of
the problem. The best number of underlying clusters can be seen through the compactness of the
clusters, defined by the Silhouette score metrics

s≡ b−a
max(a,b)

, (3.1)

where a are refers to the mean distances between a sample data point and all other points in the
same class, while b marks the same with respect to the next nearest cluster. The Silhouette score
as a function of number of clusters is shown in Fig. 3. To mitigate the algorithm sensitivity to the
choice of the initial cluster centres, the mean result from a large number of random Monte Carlo
initial setups is used.

3.4 Spectral Clustering

Unlike the K-mean clustering, the spectral clustering joins data points based on the graph
connectivity rather than a distance to a cluster centre, overriding the K-means clustering limitation
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Figure 1: Relative feature importance given by the simulation of 1000 realisations of random forests. Error-
bars denote the fluctuation given by the Monte Carlo process. The green line plots the completeness of the
dataset reconstructed only with the most significant features (the fraction of information kept compared to
the initial dataset).
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Figure 2: Left: The scheme of the K-mean clustering algorithm. 1) The initial cluster centres are set
randomly. 2) The points are assigned to belong to the nearest cluster centre. 3) The cluster centres are
then recalculated as centre of masses of the assigned data points. 4) Steps 2 and 3 are repeated until a
convergence has been achieved. Right: The result from the K-mean clustering for 2 clusters. The true GRBs
are annotated. The PCA projection into 3 dimensions is used for visualisation purposes only, not for the data
pre-processing, the clustering happens in the 8-dimensional vector space.
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Figure 3: The silhouette score measures the compactness of the identified clusters. The score is plot as a
function of the number of clusters. The highest values for k = 2 and k = 3 suggests that the optimal number
of clusters is 2 or 3.

to the d-dimensional spheroid shape of the clusters. The connections between the data points xi

are defined by the affinity matrix Ai j ' exp
(
−α ‖ xi− x j ‖2

)
where α is a constant. Alternatively,

with a threshold applied Ai j = 0, if ‖ xi− x j ‖2≥ R, where R is the hard cut off. Then, the graph
Laplacian is constructed L = D−A, where D is the diagonal degree matrix measuring the degree of
each node. In this dual graph representation each cluster will occupy a diagonal block. Eigenvalues
of the system Lv = λv are calculated. The k eigenvectors corresponding to the k lowest eigenvalues
define k-dim subspace in which clusters can be found by using the standard K-means clustering
technique.
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Figure 4: Left: The clusters identified by the spectral clustering algorithm. The true GRBs are annotated.
The PCA projection is again used for visualisation purposes only, not for the data preprocessing. Right: The
normalised confusion matrix of the spectral clustering algorithm. The numbers depict the actual fraction of
true/false positive/negative associations in each class when compared to the true labels.
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3.5 Outliers

In the classification task, rare events such as sGRBs can be viewed as outliers in the SGRs
class. The outlier score Sout , defined as the relative distance to a data point from the centre identified
by K-mean clustering, is calculated and normalised to the mean distance in the sample

Sout ≡
distance(x,centroidC)

median(∀x∈Cdistance(x,centroidC))
(3.2)

Data points further than 3σ threshold from the SGR cluster centre are marked as outliers.
Alternatively, the traditional support vector machine (SVM) algorithm can be modified to

detect outliers. The SVM algorithm tries to set the separation hyperplane between two classes of
data points in the vector space of the features maximising the margin from the separation surface.
In the extreme case, one class can consist a single test point. The relative size of the margin around
this point determines whether or not the data point is considered as an outlier.
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Figure 5: Top left: Outlier score measured as distance from the SGR flare cluster centre. The data points
above 3σ threshold are marked green. Bottom left: The PCA projection of the data points with the outliers
with the respect to the distance from the cluster centre are marked in green. Short GRBs are annotated by a
star. Top right: Outlier score as a logarithm of the inverse of the relative size of the SVM margin. Negative
values mean further outliers. Bottom right: The PCA projection of the data points with the outliers identified
by the single class SVM algorithm are marked green. Short GRBs are annotated by a star.

4. Conclusions

The most relevant features to perform the classification are hard-to-soft ratio, Galactic position
flag, intrinsic variations, loneliness (number of flares in the vicinity) and the flux in counts in the
low energy band. However, none of the features exceeds 15% of importance individually. Based
on the Silhouette score, the 8-dim feature space representation suggests 3 clusters (Fig. 3). Cross-
check with the true labels reveals the group of sGRBs, SGRs and the branch of some SGR giant
flares in the vector space, clearly distinguishable from the sGRB group (Fig. 2 and Fig. 4). Assign-
ing the cluster with majority of true SGRs in it to the SGRs cluster and the same for sGRBs, the
overall classification accuracy reaches 96%. A similar result is achieved from the outlier analysis.
This gives a power to discriminate in first order the sGRB from the SGRs without the need for de-
tailed spectral information. None of the 4 sGRBs was misclassified as an SGR flare. There are 1-2
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isolated peculiar SGR flares that occupy similar region in the parametric space as sGRBs. The very
marginal case of the sGRB subclass, the least distant outlier from the SGR class, is GRB 071017
which has been an unusually soft sGRB [12, 13].

Although, the machine learning concept is general, the clustering may be unique for the given
instrument and the process used to collect the data. The presented method can be further tested on
new sGRBs and SGR flares detected by INTEGRAL or be modified to be applied on a dataset from
a different mission.

References

[1] F. Lebrun, J.P. Leray, P. Lavocat et al., ISGRI: The INTEGRAL Soft Gamma-Ray Imager, A&A, 411,
L141 (2003)

[2] C. Winkler et al., The INTEGRAL mission, A&A, 411, L1–L6 (2003)

[3] E. Nakar, Short-hard gamma-ray bursts, Physics Reports, 442, Issue 1-6:166-236 (2007)

[4] S. Mereghetti, The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray
pulsars, A&A Reviews, 15, 255-287 (2008)

[5] S. Mereghetti, D. Gotz, J. Borkowski et al., The INTEGRAL Burst Alert System, A&A, 411, L291
(2003)

[6] M. Topinka, Studies of Cosmic Gamma-Ray Bursts and a Search for Other Transient Events Detected
by the INTEGRAL, PhD thesis (2011)

[7] Mereghetti, S., Gotz, D., Weidenspointer, et al., Strong Bursts from the Anomalous X-Ray Pulsar
1E 1547.0-5408 Observed with the INTEGRAL/SPI Anti-Coincidence Shield, ApJ, 696, L74 (2009)

[8] Hurley E.P, et al., An exceptionally bright flare from SGR 1806-20 and the origins of short-duration
γ-ray bursts, Nature, 434, 1098–2005 (2005)

[9] K. Hurley, Soft gamma repeaters, Advances in Space Research, 47, 1337 (2011)

[10] F. Pedregosa, G. Varoquaux, A. Gramfort et al., Scikit-learn: Machine Learning in Python, Journal of
Machine Learning Research, 12, 2825 (2011)

[11] Ž. Ivezic, A. J. Connolly, J. T. VanderPlas and A. Gray, Statistics, Data Mining and Machine
Learning in Astronomy, Princeton University Press (2014)

[12] M. Topinka, A. Martin-Carrillo, S. Meehan, L. Hanlon and B. McBreen, New outbursts from
GRB 071017 and 1E1547.0-5408 discovered in an automated search for SGR-like events in the
INTEGRAL archive, 8th INTEGRAL Workshop. The Restless Gamma-ray Universe, 104 (2010)

[13] S. Mereghetti, P. Esposito, A. Tiengo et al., The magnetar candidate AX J1818.8-1559, A&A, 546,
A30 (2012)

8


