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1. Introduction

Study of form factors has been important in the field of hadron physics as they provide im-
portant information about internal structure of the nucleon [1, 2, 3]. Recently, experiments have
measured and produced remarkably precise data for the electromagnetic form factors [4, 5, 6]. The
nucleon electromagnetic form factors have been used to study the distribution of charge and mag-
netization densities of quarks inside the nucleon [7, 8]. To get a more clear picture of the nucleon
structure, one can fully parameterize the structure of the nucleon in terms of generalized parton
distributions (GPDs) [9, 10] which are functions of longitudinal momentum x of the quark, the
invariant momentum transfer t and the skewness parameter ξ which gives the fraction of the lon-
gitudinal momentum transfer to the nucleon. The Fourier transform of the GPDs w.r.t transverse
momentum transfer has not only been used to study the nucleon structure in transverse impact pa-
rameter space [11, 12, 13] but it also gives a tomographic picture of the distribution of quark charge
densities inside the nucleon through the impact parameter dependent parton distribution function
(ipdpdf) q(x,b⊥) for a quark of momentum fraction x located at a transverse position b⊥.

Transverse charge density defines a way to analyze electromagnetic form factors of hadrons
moving at infinite momentum with transverse distance b⊥ from the transverse center of momen-
tum [14]. Charge densities have been discussed in impact parameter space for the polarized and
transversely polarized nucleons [8, 15], in finite radius approximation [16], in scalar diquark model
using transverse coordinate space [7] as well as using Sachs form factors [17, 18]. Transverse den-
sities can also be useful in the study of the spatial distribution of the momentum P+ and can be
related with the Fourier transforms of the gravitational form factors A(q2) and B(q2) [19].

The above discussion motivate us to study the charge and magnetization densities obtained
from the helicity non flip and helicity flip form factors. One of the most successful model which
finds its application for the quantities discussed above consists of spin- 1

2 system as a composite of
spin- 1

2 fermion and spin-1 vector boson. We have generalized the framework of QED by assigning
a mass M to external electrons in the Compton scattering process, but a different mass m to the
internal electron line and a mass λ to the internal photon line. In our case we take ξ = 0 [12]
which represents the momentum transfer exclusively in transverse direction leading to the study of
ipdpdfs in transverse impact parameter space.

The purpose of the present communication is to determine the distribution of nucleon charge
density in transverse coordinate space and in impact parameter space using light front wave func-
tions (LFWFs) of simple spin- 1

2 objects like dressed quark or a dressed electron in theory. Further,
it would be significant to develop a relation between the distribution of quark charge densities
inside nucleon in the transverse coordinate space as well as in the impact parameter space particu-
larly for the u and d quark distribution by using a fitted set of parameters. This will give a deeper
understanding of both the spatial and transverse distribution of the quark densities.

2. Nucleon charge densities

The nucleon form factors are defined in terms of the electromagnetic current operator Jµ(x) as
[9, 20]

〈p′,λ ′|Jµ(0)|p,λ 〉= ū(p′,λ ′)
(

γ
µF1(q2)+ i

σ µν

2M
qαF2(q2)

)
u(p,λ ), (2.1)
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where qν = p′ν − pν is the momentum transfer and in the present case it is taken as space-like
(q+ = 0) leading to −q2 = Q2. The σ µν is the spin operator, γµ denote the Dirac matrices and
u(p,λ ) for the Dirac spinor with mass M. The initial (final) momentum and helicity of the nucleon
are taken as p,λ (p′,λ ′) respectively. The Sachs form factors [17] can be defined in terms of the
Dirac and Pauli form factors as follows

GE(q2) = F1(q2)− q2

4M2 F2(q2),GM(q2) = F1(q2)+F2(q2). (2.2)

Transverse charge density for a unpolarized nucleon ρ(b⊥) gives the charge density of the nucleon
at a transverse position b⊥ for any value of the longitudinal momentum or position. It can be
obtained by integrating the ipdpdfs over the longitudinal momentum fraction x and can be expressed
in terms of the Dirac form factor [7] and further in terms of GE and GM the transverse charge density
for unpolarized nucleon can be expressed as

ρ(b⊥) =
∫

∞

0

q dq
2π

J0(qb⊥)
GE(q2)+ τGM(q2)

1+ τ
, (2.3)

where J0 is a cylindrical Bessel function and τ = q2

4M2 .
The Dirac and Pauli form factors can be expressed as overlaps of the light front wave functions

(LFWFs) for the two-particle Fock state. We consider here a spin- 1
2 system as a composite of spin- 1

2
fermion and spin-1 vector boson. The details of the model have been presented in Ref. [21, 22, 23].

The Dirac and Pauli form factor defined in terms of the spin non-flip and spin flip matrix
elements of the J+ current are expressed in Ref. [22]. The transverse charge density from Eq. (2.3)
in terms of Sachs form factors can now be written as

ρ(b⊥) =
∫

∞

0

dQ Q
2π

J0(Q b⊥)
∫ 1

0
dx

(1+ τ)
(

2M4(1+ x2)(1− x)I1 +
2(Mx−m)2(1−x)3I2

x2

)
1+ τ

+

Q2M3(Mx−m)x(1− x)3I2−4τM5(Mx−m)x(1− x)3I2

1+ τ
. (2.4)

where

I1 = π

∫ 1

0

α(1−α)

2D2 dα, I2 = π

∫ 1

0

α(1−α)

D3 dα,

D = α(1−α)(1− x)2q2
⊥−M2x(1− x)+m2(1− x)+λ

2x. (2.5)

In Fig. 1 we have presented the result for nucleon charge density as a function of impact param-
eter. For numerical calculations we have taken the value of masses of external fermion, internal
fermion and internal boson as M = m = 0.5MeV and λ = 0.02MeV respectively after imposing
the condition M < m+λ to prevent nucleon decay [24]. From the figure, we find that the charge
density is peaked near b⊥ = 0 and decreases as the value of b⊥ increases which implies a maximum
distribution near the center of momentum.

3. Charge density in transverse coordinate space

The LFWFs in transverse coordinate space ψ̃(x,~r⊥) can be obtained by Fourier transforming
ψ(x,~k⊥) in the momentum space

ψ̃(x,~r⊥) =
∫ d2k⊥

(2π)2 ei~k⊥·~r⊥ψ(x,~k⊥), (3.1)
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Figure 1: Nucleon charge density (in f m−2) as a function of b⊥ (in f m).

where~r⊥ is the transverse coordinate. The LFWFs for the spin up state in the transverse coordinate
space can now be expressed as

ψ̃
↑
+ 1

2+1
(x,~r⊥) = i

e
8π

√
2M2(1− x)

3
2 r⊥K0(

√
Dr⊥),

ψ̃
↑
+ 1

2−1
(x,~r⊥) = −i

e
8π

√
2M2x

√
1− xr⊥K0(

√
Dr⊥),

ψ̃
↑
− 1

2+1
(x,~r⊥) = − e

4π

√
2M2(Mx−m)(1− x)

3
2

1√
D

r⊥K1(
√

Dr⊥), (3.2)

whereas for spin down state we have

ψ̃
↓
+ 1

2−1
(x,~r⊥) = −

√
2

e
4π

M2(Mx−m)(1− x)
3
2

r⊥√
D

K1(
√

Dr⊥),

ψ̃
↓
− 1

2+1
(x,~r⊥) = i

e
8π

√
2M2x(1− x)

1
2 r⊥K0(

√
Dr⊥),

ψ̃
↓
− 1

2−1
(x,~r⊥) = −i

e
8π

√
2M2r⊥(1− x)

1
2 K0(
√

Dr⊥), (3.3)

where K is the Bessel function of second kind.
In order to compare the nucleon charge density in impact parameter space (ρ(b⊥)) with the

density distribution in the transverse coordinate space, we first define the density distribution in the
transverse coordinate space as

P(~r⊥) =
∫

dx
e2

16π2

[1
2

M4(1− x)r2
⊥(1+ x2)K2

0 (
√

Dr⊥)+2(Mx−m)2M4

×(1− x)3

D
r2
⊥K2

1 (
√

Dr⊥)
]
. (3.4)

A precise relation between the nucleon density distribution P(r⊥) and charge distribution
ρ(b⊥) can be obtained using elementary convolution theorems and Fourier transforms is given
as

ρ(x,~b⊥) =
1

(1− x)2 P

(
x,

~b⊥
−1+ x

)
. (3.5)

In order to obtain the explicit contributions of the u and d quarks in the nucleon density distribution
P(r⊥) and charge distribution ρ(b⊥), we have followed the formalism used in Ref. [7] where the
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Figure 2: Results for ρu(d)(x,b⊥) (in f m−2) and Pu(d)(x,r⊥) (in f m−2) for the up (down) quark in b⊥ (in
f m) and r⊥ (in f m) space respectively.

isospin symmetry Pu = Pp +
Pn
2 , Pd = Pp + 2Pn has been used with similar type of relations for

charge density in the impact parameter space. A fitting can be carried out with the experimental
data of the Dirac form factors of the nucleon to obtain the fitted values of the masses of the internal
fermions and bosons. For the present work we have used the same set of fitted values of m, λu and
λd as in Ref. [7, 18, 25].

In Fig. 2, we have presented the result for density distribution and charge distribution for u
and d quarks respectively. These plots give the complete spatial information about the nucleon. It
is clear from the plots that charge and density distributions increase with the increasing value of the
impact parameter b⊥ and the transverse coordinate r⊥ respectively, reach a maxima and then start
decreasing. The peak for the charge distribution in impact parameter space is around b⊥ ∼ 0.4 f m
whereas the peak for the density distribution in transverse coordinate space r⊥ ∼ 0.6 f m for both
the u and d quarks. The magnitudes of ρu(b⊥) and Pu(r⊥) are however different from ρd(b⊥) and
Pd(r⊥). A closer look at the figure reveals that the density distribution in transverse coordinate
space falls off slowly as compared to the charge distribution in impact parameter space. This is due
to the factor b⊥

−1+x appearing in Eq. (3.5).

4. Conclusions

In the present work, we have considered the light-cone Fock state representation of the com-
posite system consisting of external and internal fermion state with respective masses M and m. The
mass of the vector constituent is taken to be λ . The electromagnetic Dirac and Pauli form factors
as well as the Sachs form factors (GE(Q2)) and (GM(Q2)) have been calculated from the overlap
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of LFWFs. The nucleon charge density has been obtained for the case of unpolarized nucleon in
transverse coordinate space as well as in the impact parameter space. Further, a relation has been
developed between the charge distribution of the quarks inside nucleon in the transverse coordinate
space as well as in the impact parameter space particularly for the u and d quark distribution by
using a fitted set of parameters.
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