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1. Introduction

Relevant operators to describe scattering amplitudes at high energy are Wilson line operators:

path-ordered exponential along the trajectory of the particle’s velocity. In QCD the Wilson lines

are defined as

U(x⊥) = 1+ ig

∫ ∞

−∞
duA•(u p1 + x⊥)+ (ig)2

∫ +∞

−∞
du

∫ u

−∞
dvA•(up1 + x⊥)A•(v p1 + x⊥)+ . . . (1.1)

Here, we used the notation x• =
√

s
2
x− and x∗ =

√

s
2
x+ with x+ and x− light-cone coordinates

defined as x± = x0±x3√
2

; p
µ
1 and p

µ
2 are ligh-cone vectors such that p2

1 = p2
2 = 0 and p1 · p2 =

s
2

with

s the Mandelstam variable for the center-of-mass energy.

At High-energy scattering amplitudes can be expanded in terms of Wilson lines using the

Operator Product Expansion (OPE) [1, 2]. The energy dependence of the amplitudes is given by

the evolution equations in rapidity of the Wilson line operators.

In high-energy Deep Inelastic Scattering (DIS) the virtual photon emitted by the lepton long

before scattering off the hadronic target, splits into a quark and anti-quark pair. The propagation

of the color dipole through the hadronic target is given by a scattering amplitude proportional to

two Wilson lines. The amplitude can then be written as a convolution of the a coefficient function

(the photon impact factor now known at NLO [3, 4]) and a matrix element of a color dipole. The

evolution equation of the color dipole represent the first of the Balitsky hierarchy of evolution

equations which, in the large Nc approximation, reduces to the Balitsky-Kovchegov equation [1, 5]

(for a review see Ref. [6]).

For proton-Nucleus or Nucleus-Nucleus collisions, the scattering amplitudes are composed of

several Wilson lines and the corresponding evolution equation is the Balitsky-JIMWLK evolution

equation [1, 7].

Before we present the result for the NLO evolution equation of Wilson lines in Section 3, let

us begin with a brief pedagogical introduction to the background field technique in Section 2, and

derive as an example the evolution of one Wilson line operator. In section 3 we will present the

NLO correction to the evolution equation of one Wilson line and the evolution equation of Wilson

lines with triple interactions. The complete result of the Balitsky-JIMWLK evolution equation can

be found in Ref. [8].

2. Leading Order Evolution Equation

In this section we provide an introduction to the background field method used to derive the

evolution equation of Wilson line operators.

At high-energy (high-parton density) the energy dependence of the scattering amplitude is

encoded in the evolution of matrix elements made of Wilson lines. Let us indicate with Oη1 an

operator made of several Wilson lines with rapidity dependence η1 and if we indicate with |B〉 the

target state, then the scattering amplitude is proportional to

〈B|Oη1 |B〉 (2.1)

The Wilson lines may depend on the rapidity parameter in at least two different ways. One

way is the dependence by slope: if the particle propagate at infinite energy then its trajectory is on
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the light cone. If we assume that the energy is very large but not infinite, then, the trajectory of the

particle is slightly off the light cone i.e it is along nµ = p
µ
1 + e−2η p

µ
2 direction. The energy of the

particle is given by its rapidity η and when the energy is infinite the propagation of the particle is

parallel to the light-cone vector p
µ
1 .

The rapidity dependence by slope of the Wilson line is

Uη(x⊥) = Pexp
{

ig

∫ ∞

−∞
du nµ Aµ(un+ x⊥)

}

(2.2)

Alternatively, one can include the energy dependence into the Wilson line operator by rigid cut-off

i.e. by cutting off the longitudinal component of the momentum of the gluon in the following way

Uη
x = Pexp

[

ig

∫ ∞

−∞
du p

µ
1 A

η
µ(up1 + x⊥)

]

(2.3)

with

A
η
µ(x) =

∫

d4k

(2π)4
θ(eη −|αk|)e−ik·xAµ(k) (2.4)

and with kµ = αk p
µ
1 + βk p

µ
2 + k

µ
⊥. As it has been shown in Ref. [11, 8], at NLO it is more

convenient to use the rapidity dependence by rigid cut-off.

At high energy the main degree of freedom are gluons, therefore we may assume, in the first

approximation, that the target is made of gluon field. Let us then consider the operator Oη1 in

the background of an external gluonic field and calculate its evolution with respect to the rapidity

parameter by changing the parameter η1 by an infinitesimal step ∆η . To this end, we introduce a

rapidity divide η2 which separates the classical fields having rapidity up to η2 from the quantum

fields having rapidity η1 > η > η2 that will be integrated out to form Feynman diagrams. Formally,

the separation of the correlation function in classical and quantum fields may be written as follows

〈Oη1〉A → 〈O ′η2 ⊗O ′η1〉A (2.5)

The subscript A indicates that the matrix elements are evaluated in the background of the gluonic

external field. In principle, after the separation of the fields in classical and quantum components,

the operator may be different from the one we started with. We have indicated this with a prime on

the operator O in Eq. (2.5). Since particles with different rapidities perceive each other as Wilson

lines, the operators obtained after splitting the fields in classical and quantum are still Wilson lines.

The result of the integration of the matrix element on the right-hand-side (RHS) of Eq. (2.5)

over the quantum fields is the kernel of the one loop evolution equation times the matrix element of

the operator made of the classical fields i.e. with rapidity parallel to η2, and times the infinitesimal

step in rapidity ∆η = η2 −η1. The one-loop evolution equation of the O operator with respect to

rapidity is

〈Oη1〉A = αs(η1 −η2)Kevol ⊗〈O ′η2〉A (2.6)

The resulting evolution equation, obtained following the semi-classical approach just described,

can be linear or non-linear:
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• Linear case Oη1 = αs∆η Kevol ⊗ Oη2

• Non-linear case Oη1 = αs∆η Kevol ⊗ {Oη2Oη2}

The rapidity evolution of one Wilson line is given by the Feynman diagrams in Fig. (2). The

red strip in the figure represents the background field in the spectator frame: the external field is

highly boosted, and it gets contracted in the direction of the boost and time-dilated. Thus, the

propagation of the particle is in the background of a shock-wave external field. The evolution

Figure 1: Feynman diagrams for one loop evolution of one Wilson lines.

equation for one Wilson line is

〈{Uη1
x }i j〉A =

αs

2π2
∆η

∫

d2z

(x− z)2
⊥

[

〈tr{Uη2
x Uη2†

z }{Uη2
z }i j〉A −〈 1

Nc

{Uη2
x }i j〉A

]

(2.7)

where we have used the short-hand notation Ux ≡ U(x⊥), and the color index i, j = 1,2,3. The

kernel of the evolution in this case is K(x,z) = 1
(x−z)2

⊥
, and the equation is clearly non-linear. Before

the one-loop evolution, we have one Wilson line with rapidity η1 corresponding to the propagation

of one quark in the background of a shock-wave. At one loop order, instead, we have a quark and

a gluon propagating in the shock-wave.

The scattering amplitude of DIS is proportional to

U (x⊥,y⊥) = 1− 1

Nc

tr{U(x⊥)U
†(y⊥)} (2.8)

To get the evolution equation of the color-dipole we need the evolution equation of the operator

Ux and U†
y , and also the evolution equation of pairwise interactions. Thus, the operator d

dη of the

evolution equation does not follow the Leibniz rule for derivative of product of function. Indeed,

this is represented by the Feynman diagrams in Fig. (2),

x

a

b

b

a a

a

b

b

y
(a) (b) (c) (d)

x xx* xx* x*x x*

Figure 2: Feynamn diagram for the LO evolution equation of a color-dipole. We omitted the virtual correc-

tion diagrams.

and the corresponding evolution equation is

d

dη
Û (x,y) =

αsNc

2π2

∫

d2z (x− y)2

(x− z)2(y− z)2

{

Û (x,z)+ Û (z,y)− Û (x,y)− Û (x,z)Û (z,y)
}

(2.9)
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Equation (2.9) is the LO Balitsky evolution equation [1] for color dipole. When the non-linear

term operator 〈Û (x,z)Û (z,y)〉 factorizes at large Nc as 〈Û (x,z)〉〈Û (z,y)〉, Eq. (2.9) becomes the

Balitsky-Kovchegov equation [1, 5]. The linear terms in Eq. (2.9) correspond to the BFKL evolu-

tion equation obtained in perturbative QCD in the leading-log resummation α ≪ 1 and αsη ∼ 1;

while the non-linear term appears because of the semi-classical approach where the new resumma-

tion parameter is α2
s A1/3 with A being the atomic number in the case of DIS off a nuclear target.

The BFKL equation is known to violate unitarity, but the non linear term in Eq. (2.9) preserves

unitarity.

In order to get the LO evolution equation for trace of any number of Wilson lines or prod-

uct of any number of Wilson lines, which would correspond to the Balitsky-JIMWLK evolution

equation [1, 7], one needs to obtain the evolution equation for the following operators as well:

{U
†η1
x }i j, {U

η1
x U

η1
y }i j, {U

η1
x U

†η1
y }i j, {U

†η1
x U

†η1
y }i j. Thus, one obtains a set of five evolution

equations that can be used to calculate the evolution equation of operators with any trace of Wil-

son lines. As an example, let us consider the evolution equation of a four Wilson lines operator

tr{UxU
†
y UwU†

z }. To this end, one has to sum the evolution of each single Wilson line using the

evolution equation like Eq. (2), and similar evolution equations for each paring.

Our ext task is to obtain the evolution equations of matrix elements of operators with any trace

of Wilson lines at NLO. We will obtain evolution equations similar to the one given in (2.7) but at

the next-to-leading order (NLO).

3. Next-to-leading order evolution equation

In order to obtain the evolution equation of operators with any trace of Wilson lines (or also

product of Wilson lines) at the next to leading order, one has to calculate a similar set of evolution

equations at NLO. At NLO, however, we may have not only the evolution of single Wilson lines

and of two connected Wilson lines but also evolution of triple Wilson lines interaction (see Fig. 3 e)

and f)). The diagrams contributing to the NLO B-JIMWLK with three Wilson lines were calculated

a) b)
c) d)

e) f)

Figure 3: Sample of Feynman diagrams contributing to the NLO B-JIMWLK evolution equation.

in Ref. [9]. In Ref. [8] we have calculated the full Balitsky hierarchy at NLO, confirming also the

result obtained in Ref. [9]. The NLO JIMWLK Hamiltonian [10], on the other hand, was obtained

using the NLO BK equation calculated in Ref. [11, 12] and the evolution with three connected

Wilson lines of Ref. [9].

For simplicity, we present here only the one-particle interaction (“gluon reggeization” term) at
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NLO

d

dη
(U1)i j =

α2
s

8π4

∫

d2z4d2z5

z2
45

{

Udd′
4 (U ee′

5 −U ee′
4 )

([

2I1 −
4

z2
45

]

f ade f bd′e′(taU1tb)i j +
(z14,z15)

z2
14z2

15

ln
z2

14

z2
15

×
[

i f ad′e′({td , te}U1ta)i j − i f ade(taU1{td′
, te′})i j

]

)}

+
α2

s Nc

4π3

∫

d2z4z2
14 (Uab

4 −Uab
1 )(taU1tb)i j

{[11

3
lnz2

14µ2 +
67

9
− π2

3

]}

(3.1)

where

I1 ≡ I(z1,z4,z5) =
lnz2

14/z2
15

z2
14 − z2

15

[z2
14 + z2

15

z2
45

− (z14,z15)

z2
14

− (z14,z15)

z2
15

−2
]

and the evolution for triple interactions (a sample of diagrams is given in Fig. 3 e and f).

d

dη
(U1)i j(U2)kl(U3)mn = i

α2
s

2π4

∫

d2z4d2z5

{

J12345 ln
z2

34

z2
35

× f cde
[

(taU1)i j(t
bU2)kl(U3tc)mn(U4 −U1)

ad(U5 −U2)
be

− (U1ta)i j(U2tb)kl(t
cU3)mn(U4 −U1)

da(U5 −U2)
eb
]

+ J32145 ln
z2

14

z2
15

f ade
[

(U†
1 ta)i j(t

bU2)kl(t
cU3)mn(U4 −U3)

cd(U5 −U2)
be

− (taU1)i j ⊗ (U2tb)kl(U3tc)mn(U
dc
4 −Udc

3 )(U eb
5 −U eb

2 )
]

+ J13245 ln
z2

24

z2
25

f bde
[

(taU1)i j(U
†
2 tb)kl(t

cU3)mn(U4 −U1)
ad(U5 −U2)

ce

− (U1ta)i j(t
bU2)kl(U3tc)mn(U4 −U1)

da(U5 −U3)
ec
]

(3.2)

where

J12345 ≡ J (z1,z2,z3,z4,z5) =−2(z14,z34)(z25,z35)

z2
14z2

25z2
34z2

35

− 2(z14,z45)(z25,z35)

z2
14z2

25z2
35z2

45

+
2(z25,z45)(z14,z34)

z2
14z2

25z2
34z2

45

+
(z14,z25)

z2
14z2

25z2
45

(3.3)

Here we have used the short-hand notation U1 ≡ U(z1) etc. In Eq. (3.1) we have omitted the

quark-loop contributions. The evolution for pairwise interactions at NLO can be found in Ref. [8].

4. Conclusions

The factorization in rapidity of scattering amplitudes using the OPE at high-energy in Wilson

lines is a successful tool for the study of processes at high energy. Its validity has been proven

at NLO accuracy [3, 4]. The BK equation is a large Nc limit of the first of the Balitsky hierarchy

equations. In order to generalize NLO BK equation to the NLO evolution of any number of Wilson

lines, we considered the triple interaction besides the self-energy interaction and the pairwise in-

teraction. For simplicity, here we have presented only the NLO evolution equation for self-energy

6
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interactions given in Eq. (3.1) and the evolution equation of Wilson lines with triple interactions

given in Eq. (3.2). The evolution equation for pairwise interactions at NLO can be found in Ref.

[8].

This material is based upon work supported by the U.S. Department of Energy, Office of

Science, Office of Nuclear Physics under Award Number DE-SC0004286.
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