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I discuss recent ideas relating to anisotropic gluon distributions in the strong field limit of high-
energy QCD. They lead to anisotropic particle scattering and, hence, to disconnected contribu-
tions to multi-particle azimuthal correlations. A first exploratory analysis of the amplitude of the
cos(2φ) anisotropy of the gluon distribution at small x is presented.
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1. Anisotropic gluon distribution at small x

Consider scattering of a (small) dipole in the fundamental representation off a large nucleus.
At high energies the S-matrix in the eikonal approximation is given by [1]

S (r,b)≡ 1
Nc

tr V †(x)V (y) , (1.1)

where r ≡ x− y is the dipole vector and b ≡ 1
2(x+ y) is the impact parameter. V (x) denotes a

light-like Wilson line describing the propagation of the projectile through the field of the target

V (x) = Pexp
{

ig
∫

dx−A+a(x−,x) ta
}
. (1.2)

The stochastic nature [2] of the small-x target field A+a(x−,x) gives rise to a non-trivial angular
dependence of S (r) under rotations of r [3, 4].

In the MV model [2] the large-x valence partons act as random, recoilless color charges ρa(x)
described by the effective action

Seff[ρ
a] =

∫
dx− d2x

ρa(x−,x)ρa(x−,x)
2µ2 (1.3)

with µ2 ∼ g2A1/3 proportional to the thickness of a nucleus and to the so called saturation scale
Q2

s ∼ g4µ2. The Weizsäcker-Williams fields generated by ρa(x) are pure gauges; in covariant
gauge,

Aµa(x−,x) =−δ
µ+ g

∇2 ρ
a(x−,x) . (1.4)

Using Eq. (1.4) in Eqs. (1.1,1.2) provides the S-matrix for each target configuration.
The random distribution of color charges ρa(x) will clearly generate azimuthally anisotropic

soft fields Aµa(x−,x). The angular structure fluctuates from one configuration ρa(x) of valence
charges to the next. Averaging over these fluctuations projects onto the isotropic part of the gluon
distribution,

g2

Nc
〈Ea

i (b1)Eb
j (b2)〉=

1
N2

c −1
δ

ab
δi j Q2

s ∆(b1−b2) . (1.5)

∆(b) describes the impact parameter dependence of the correlator; its explicit form is not important
here. The light-cone electric field of the target in covariant gauge is given by

E i(b) =
∫

dx−F+i =−∂
i
∫

dx−A+(x−,b) . (1.6)

However, the MV model sources ρa(x) are slow variables, and so are their angular fluctuations.
Hence, they should be averaged over only after the final observables such as cn{2} (see below)
have been computed. Hence, observables that probe the angular fluctuations of the stochastic fields
would be described by an electric field correlator of the form [5]

g2

Nc
〈Ea

i (b1)Eb
j (b2)〉â =

1
N2

c −1
δ

ab Q2
s ∆(b1−b2)

(
δi j +2A2

[
âiâ j−

1
2

δi j

])
. (1.7)

This applies if the amplitude of cos2φ anisotropies dominates.
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Figure 1: The ∼ cosnφ amplitudes 〈An〉(r) as functions of the dipole size r for n = 1, · · · ,4. The fit to 〈A2〉
corresponds to the function from Eq. (1.14). Figure from ref. [4].

For a general configuration of the sources, the S-matrix for a fundamental charge and Nc ≥ 3
is complex. The real (imaginary) part corresponds to C -even (C -odd) interactions [6]:

1−D(r)≡ ReS (r) =
1

2Nc
tr
[
V †(x)V (y)+V †(y)V (x)

]
, (1.8)

O(r)≡ ImS (r) =
−i
2Nc

tr
[
V †(x)V (y)−V †(y)V (x)

]
. (1.9)

The azimuthal amplitudes can be extracted by expanding the real and imaginary parts of the S-
matrix in a Fourier series:

D(r) = N (r)

(
1+

∞

∑
n=1

A′2n(r)cos(2nϕr)

)
, (1.10)

O(r) = N (r)
∞

∑
n=0

A′2n+1(r)cos [(2n+1)ϕr] . (1.11)

Here, the function N (r) denotes the isotropic part of the dipole S-matrix. As already mentioned
above each amplitude A′n contains a random phase which fluctuates from configuration to configu-
ration. To discard this phase define An =

π

2 |A
′
n|; the normalization factor arises from

π

2

∫ dψ

2π
|cos nψ|= 1 . (1.12)

These anisotropy amplitudes can finally be averaged over many configurations to obtain 〈A1〉, · · ·,
〈A4〉, c.f. Fig. 1.

At r <∼ 1/Qs the amplitude 〈A2〉 is around 20%. Such values are in the range of the asymme-
tries relevant for phenomenology of pA collisions at collider energies (see below). On the other
hand, one should keep in mind that here no attempt has been made to bias the configurations to-
wards “high multiplicities” as done in the experiments. Fig. 1 also shows that the fluctuations√
〈(δA2)

2〉 are similar in magnitude to the mean value 〈A2〉. Hence, there are rather large fluctua-
tions of A2 for different configurations.
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Figure 2: Same as Fig. 1 for “b-smeared” target E-fields [4].

Figure 2 shows the same amplitudes but for E-fields which have been “smeared” over an area
πr2 set by the size of the dipole. Comparing Figs. 1 and 2 one observes that “smearing” has
a negligible effect for r <∼ 1/Qs while the anisotropy amplitudes at large r are suppressed. This
shows the correlation over finite transverse distance scales of the angular structure of the E(x)
configurations.

The MV-model amplitude 〈A2〉(r) matches the distribution of linearly polarized gluons (for an
unpolarized target) h⊥g

1 (x,k2) introduced in TMD factorization [7]

δ
i j f g

1 (x,k
2)+

(
k̂ik̂ j− 1

2
δ

i j
)

h⊥g
1 (x,k2) . (1.13)

Within the framework of the MV model, the result for h⊥g
1 (x,r) derived analytically in Ref. [7],

h⊥g
1 (x,r2) ∝

1
r2Q2

s

[
1− exp

(
−r2Q2

s

4

)]
, (1.14)

is in good agreement with the numerical results from ref [4] at small r <∼ 2Q−1
s .

Fluctuations of the small-x fields in impact parameter space generate a non-zero C -odd com-
ponent O(r) [8] despite the fact that for the C -even action (1.3) the expectation value 〈O(r)〉= 0.
This results in non-zero odd-index amplitudes A1 and A3, see Fig. 1. The figure also shows that the
expectation values of the odd amplitudes vanish as r→ 0; this is expected because

iO(r)∼ iαs r ·∇b (1−D(r,b))' iαs r3 Q2
s Qc cosϕr

[
1− r2

4

(
Q2

c cos2 ϕr

3
+Q2

s

)]
(1.15)

starts at order∼ r3 (three gluon exchange) while in eq. (1.11) we factor out the two-gluon exchange
amplitude N (r) ∼ r2. The expression on the r.h.s. of (1.15) arises from a gradient expansion in
powers of r, assuming a generic spectrum of fluctuations of Qs(b) cut off at Qc [9].

The MV model is commonly assumed to describe the gluon distribution of a large nucleus at
about x0∼ 0.01 in a regime where dipole scattering is coherent but where quantum evolution effects
can be neglected. Small-x evolution resums contributions of order (αs log x0/x)n to observables.
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Kovner and Lublinsky have solved [3] the Balitsky-Kovchegov evolution equation with explicit
azimuthal dependence of the dipole S-matrix but without impact parameter dependence, i.e. S (r)
is allowed to depend on the direction of r but not on b. They found that evolution to x < x0

washes out the anisotropies from the MV model initial condition rather quickly. Indeed, opening
up phase space for radiation increases the number of gluons per unit transverse area while b-
independent emissions can not induce additional fluctuations and so the gluon distribution should in
fact become rather isotropic, quickly. On the other hand, for impact parameter dependent evolution
the additional gluons are emitted at random locations in b space and do not lead to a very rapid
“isotropization” of the target electric field [4].

2. Multi-particle azimuthal correlations

In the previous section we have argued that the one-particle S-matrix for any particular target
configuration is (azimuthally) anisotropic. The vector â that spontaneously breaks 2D rotational
symmetry fluctuates randomly from configuration to configuration and can not be measured exper-
imentally. Instead one considers multi-particle azimuthal correlation functions [10] such as

cn{2} =
〈

ein(φ1−φ2)
〉
, (2.1)

cn{4} = 〈ein(φ1+φ2−φ3−φ4)〉−2〈ein(φ1−φ3)〉 〈ein(φ2−φ4)〉 . (2.2)

By definition these cumulants are invariant under global rotations of all particle transverse momenta
by the same angle. The anisotropy of the one-particle distribution implies non-zero disconnected
contributions to these correlation functions, for example

c2{2}=
〈
e2iφ1

〉 〈
e−2iφ2

〉
+
〈

e2i(φ1−φ2)
〉

conn.
. (2.3)

The product of single-particle anisotropies on the r.h.s. of this equation is independent of the global
rotational symmetry breaking vector â and so does not vanish upon integration over its directions.
In the limit of a strongly anisotropic target gluon distribution, 〈A2〉 = O(1), the m-particle cumu-
lants c2{m} are in fact dominated by the fully disconnected contribution so that (c2{m})1/m ' 〈A2〉
is the same for all m [5]. The pT dependence of the cumulants in this limit has been worked out
analytically within a simple model in ref. [9]; subsequently, Lappi has presented exact numerical
results for c2{2}(pT ) and c3{2}(pT ) which include both disconnected and connected contribu-
tions [11]. Qualitatively, his results exhibit a pT dependence which resembles the data from p+Pb
collisions at the LHC [12] quite well.

In the limit of small r (high pT for all particles) one finds that [5]

c2{2} ∝ A2
2 +

1
4(N2

c −1)
, (2.4)

c2{4} ∝ −A4
2 +

1
4(N2

c −1)3 . (2.5)

Thus, both disconnected and connected contributions to c2{2} are positive. On the other hand,
they enter c2{4} with opposite signs; the negative sign of the single particle elliptic deformation
(raised to the fourth power) is easily understood from eq. (2.2) when all correlators are assumed
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to factorize. A negative c2{4} has been observed by ALICE and CMS in high multiplicity p+Pb
collisions at the LHC1. For the QCD dipole interaction with a static (on the light cone) target
electric field,

1
Nc

tr V †(x)V (y) = 1+
(ig)2

2Nc
tr (r ·E(b))2 + · · · , (2.6)

c2{4}< 0 can arise only in the presence of anisotropic single particle scattering, i.e. for an anisotropic
target gluon distribution.

Finally, we return to odd-index cumulants such as c3{2}. We have seen above that the Fourier
harmonics of the target fields obtained from the S-matrix of a single fundamental dipole do contain
non-zero odd-index amplitudes A1 and A3. Their pT dependence has been discussed in refs. [9, 11].
However, experimentally one does not measure Fourier harmonics of the one-particle azimuthal
distribution but two (or more) particle cumulants as defined in (2.1,2.2). Lappi has in fact computed
the two-particle cumulant c3{2} [11] for scattering of a definite two-particle system (say, two
quarks). If the two particle S-matrix is summed over qq, qq̄, q̄q and q̄q̄ channels though the resulting
two-particle S-matrix is

S2 ∝
(

trV †(x1)V (y1)+ trV (x1)V †(y1)
)(

trV †(x2)V (y2)+ trV (x2)V †(y2)
)
. (2.7)

This expression is C -even (real) and so if one assumes quark—anti-quark symmetry of the projec-
tile wave function at small x it has even cumulants, only. Furthermore, the S-matrix for an adjoint
projectile charge is real even for scattering of a single particle and so can not generate non-zero
c1{2} and c3{2} as observed experimentally [12].

Therefore, obtaining non-zero c1{2} and c3{2} may require to account for additional soft
rescattering beyond the hard scattering from the target shockwave. Classical Yang-Mills evolution
in time of the liberated gluons indeed leads to non-zero c3{2} already at a time τ ' 1/Qs [13]. If
such rescattering is soft then the pT -distribution of c1 and c3 from the initial hard scattering should
be mostly preserved. A detailed understanding of the numerical results [13] for c3{2} is currently
lacking.
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