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We focus on a holographic approach to DIS at small-x in high energy where scattering is dominated
by exchanging a Reggeized Graviton in AdS5. We emphasize the importance of confinement, which
corresponds to a deformation of AdS5 geometry in the IR. This approach provides an excellent fit to the
combined HERA data at small x. We also discuss the connection of Pomeron/Odderon intercepts in the
conformal limit with anomalous dimensions in strong coupling.
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Introduction: AdS/CFT correspondence [1, 2], a conjectured duality between a wide class of gauge
theories in d-dimensions and string theories on asymptotically AdSd+1 product spaces, can be used to
study high energy scattering processes in the non-perturbative strong coupling limit. It has been shown,
in a holographic or AdS/CFT dual description for QCD, the Pomeron can be identified with a reggeized
Graviton in AdS5 [3, 4] and, similarly, an Odderon as a reggeized anti-symmetric Kalb-Ramond B-
field [5, 6].

In the most robust example, 4 dimensional N = 4 Super Yang Mills theory, in the limit of large ’t
Hooft coupling λ = gsNc = g2

ymNc, is believed to correspond to a limit of type IIB string theory in d = 10.
This identification partially relies on the conformal invariance of the former, but is believed to withstand
deformation. The geometry on the string side is a negatively curved space times a sphere, AdS5× S5,
having Poincare metric ds2 = R2

z2

[
dxµdxµ +dz2

]
+R2dΩ5, with the conformal group as its isometry. The

dual description allows moving from the weak to the strong coupling, with the bulk coordinate z serving
as a length scale, (z small for UV and z large for IR.)

It is important to note that conformal invariance is broken for QCD, with a non-zero beta-function,
leading to logarithmic running for gym at UV and confinement in IR. Nevertheless, approximate confor-
mal invariance remains meaningful, e.g., in perturbative treatment in the UV limit, whereas confinement
in the IR limit is crucial in addressing non-perturbative physics. It is thus necessary to deform the metric

ds2→ e2A(z)
[
dxµdxµ +dz2

]
+R2dΩ5 (1)

where A(z) ' − logz in UV ( z = 0) and deviates away from the conformal limit as z increases in order
to account for confinement 1. Under this “asymptotic AdS" setting, it is possible to provide a unified
treatment of both perturbative and non-perturbative physics at high energy.

This novel dual approach has been successfully applied to the study of HERA data [7], both for DIS
at small-x [10, 11, 12, 13] and for deeply virtual Compton scattering (DVCS) [14]. More recently, this
treatment has also been applied to the study of diffractive production of Higgs at LHC [15] as well as
other near forward scattering processes [16]. In this talk, we first describe “Pomeron-Graviton" duality
and its application to deep inelastic scattering (DIS) at small-x. We next turn to the issue of confinement
and in particular the Pomeron singularity in a soft-wall background. We also discuss Pomeron and
Odderon intercepts in the conformal limit and their relation to the anomalous dimensions.

Pomeron-Graviton Duality: It can be shown for a wide range of scattering processes that the am-
plitude in the Regge limit, s � t, is dominated by Pomeron exchange, together with the associated
s-channel screening correction, e.g., via eikonalization. In this representation, the near-forward am-
plitude can be expressed in terms of a Fourier transform over the 2-d transverse (impact parameter)
space, A(s, t) = 2is

∫
d2b ei~q·~b{1− eiχ(s,~b)

}
where χ(s,~b) is the eikonal. To first order in χ , one has

A(s,0)' 2s
∫

d2b χ(s,b)∼ s j0 where j0 is the Pomeron intercept. Traditionally, Pomeron has been mod-
eled at weak coupling using perturbative QCD; in lowest order, a bare Pomeron was first identified as a
two gluon exchange, corresponding to a Regge cut in the J-plane at j0 = 1. Going beyond the leading
order by summing generalized two gluon exchange diagrams, led to the so-called BFKL Pomeron. The
position of this J-plane cut is at j0 = 1+ log(2)λ/π2, recovering the two-gluon cut in the λ → 0 limit. In

1One useful approach is to introduce a sharp cutoff, the so-called hardwall model. Another approach leading to analytic
treatment is the so-called softwall model, which we shall turn to shortly.
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a holographic approach, the weak coupling Pomeron is replaced by the “Regge graviton” in AdS space,
as formulated by Brower, Polchinski, Strassler and Tan (BPST) [3, 4]. The BPST Pomeron contains both
the hard component due to near conformality in the UV and the soft Regge component in the IR. To first
oder in 1/

√
λ , the intercept moves from j = 2, appropriate for a graviton, down to j0 = 2− 2/

√
λ . In
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Figure 1: On the left, (a), intercept as a function of λ for the BPST Pomeron (solid red) and for BFKL (dotted and
dashed to first and second order in λ respectively). On the right, (b), the conformal invariant ∆− j curve which
controls both anomalous dimensions and the Pomeorn intercept.

Fig. 1 a, we compare the BPST Pomeron intercept with the weak coupling BFKL intercept for N = 4
YM as a function of ’t Hooft coupling λ . A typical phenomenological estimate for this parameter for
QCD is about j0 ' 1.25, which suggests that the physics of diffractive scattering is in the cross over re-
gion between strong and weak coupling. A corresponding treatment for Odderons has also been carried
out [17].

In a holographic approach, the transverse space (~b,z) is 3 dimensional, where z ≥ 0 is the warped
radial 5th dimension. The near-forward elastic amplitude again has the eikonal form [4, 8, 9],

A(s, t) = 2is
∫

d2b ei~q·~b
∫

dzdz′ P13(z)
{

1− eiχ(s,b,z,z′)}P24(z′) . (2)

where t = −q2
⊥. For hadron-hadron scattering, Pi j(z) =

√
−g(z)(z/R)2φi(z)φ j(z) involves a product of

two external normalizable wave functions for the projectile and the target respectively. Expanding in
χ(s,b,z,z′), to first order, it is seen that the eikonal function is related to a BPST Pomeron kernel in a

transverse AdS3 representation, K (s,b,z,z′), with χ(s,b,z,z′) = g2
0

2s (
R2

zz′ )
2K (s,b,z,z′).

Holographic Treatment of DIS and HERA Data: A unifying feature for the holographic map is
factorization in the AdS space. Because of factorization, this approach can now be applied to all DIS
cross sections since they can be related to the Pomeron exchange amplitude via the optical theorem,
σ = s−1ImA(s, t = 0). For DIS, states 1 and 3 are replaced by currents, and we can simply replace P13

by product of the appropriate unnormalized wave-functions. In the conformal limit, P13 was calculated
in [18] in terms of Bessel functions, so that, to obtain F2, we simply replace in (2), P13(z)→ P13(z,Q2) =

(Q2z)[K2
0 (Qz)+K2

1 (Qz)] . (Similarly, for F1, one has P13(z,Q2) = (Q2z)K2
1 (Qz).) With this substitution,

one has, e.g., F2 =
Q2

4παem
(σT +σL) =

Q2

4παems [ImA(s,0)T + ImA(s,0)L]. When expanded to first order in
χ , Eq. (2) provides the contribution to F2 from a single Pomeron, i.e., the BPST kernel, K (s,b,z,z′).

The momentum-space BPST kernel in the J-plane, G j(t,z,z′), obeys a Schrödinger equation on
AdS3 space, with j serving as eigenvalue for the Lorentz boost operators M+−. In the conformal limit,
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it takes on a simple form, G j(t,z,z′) =
∫

∞

0
dq2

2
J

∆̃( j)(zq)J
∆̃( j)(qz′)

q2−t , with ∆̃( j) = ∆( j)−2, where

∆( j) = 2+λ
1/4
√

2( j− j0) (3)

is the conformal ∆− j curve shown in Fig. 1b. The full Pomeron kernel can then be obtained via an
inverse Mellin transform. In the mixed-representation, one has K(s,b,z,z′) ∼ −∫ d j

2πi s̃ j e−iπ j+1
sinπ j

e(2−∆( j))η

sinhη

where coshη is the chordal distance in AdS3. By integrating over~b, one obtains for the imaginary part of

the Pomeron kernel at t = 0, Im K (s, t = 0,z,z′)∼ s j0√
πD logs

e−(logz− logz′)2/D logs, which exhibits

diffusion in the “size" parameter logz for the exchanged closed string, analogous to the BFKL kernel
at weak coupling, with diffusing taking place in log(k⊥), the virtuality of the off-shell gluon dipole.
D = 2/

√
λ at strong coupling, compared to D = 7ζ (3)λ/2π2 in weak coupling.

Fit to HERA Data: To confront data at HERA, it is necessary to face the issue of confinement and
saturation. Confinement can be addressed via a hardwall cutoff, z < z0, or via a softwall model, which we
shall return to shortly. The effect of saturation can next be included via the AdS3 eikonal representation.

To extract the key feature of holographic treatment, we shall first adopt a simplifying assumption.
We note that both integrals in z and z′ in (2), are sharply peaked, the first around z∼ 1/Q and the second
around the inverse proton mass, z′ ≡ 1/Q′ ∼ 1/mp. To gain an understanding on the key features of dual
approach, it is sufficient to approximate both integrand by delta functions. Under such an “ultra-local"
approximation, all structure functions take on very simple form, e.g,

F2(x,Q2) =
g2

0
8π2λ

Q
Q′

e( j0−1) τ

√
πDτ

e−(logQ− logQ′)2/Dτ +Confining Images, (4)

with diffusion time given more precisely as τ = log(s/QQ′
√

λ ) = log(1/x)− log(
√

λQ′/Q). Here the
first term is conformal. To incorporate confinement, we consider first the hardwall model. The confining
effect can be expressed in terms of image charges [3]. It is important to note, with or without confinement,
the amplitude corresponding to (4) grows asymptotically as (1/x) j0−1∼ s j0−1, thus violating the Froissart
unitarity bound at very high energies. The eikonal approximation in AdS space, (2), restores unitary via
multi-Pomeron shadowing [8, 4, 9].

F2
(x
,Q
)

Figure 2: In the left, (a), with the BPST Pomeron intercept at 1.22, Q2 dependence for “effective intercept" is
shown for conformal, hardwall and hardwall eikonal model. In the center, (b), a more detailed fit is presented
contrasting the fits to HERA data at small x by a single hardwall Pomeron vs hardwall eikonal respectively. The
softwall model, (c), was also used to fit the F2 proton structure function, (c), to the right, with good success.

We show in Fig. 2 various comparisons of our results [10] to the small-x DIS data from the combined
H1 and ZEUS experiments at HERA [7]. Both the conformal, the hard-wall model, soft-wall, as well as
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the eikonalized hard-wall model can fit the data reasonably well. This can best be seen in Fig. 2a to the
left which exhibits the Q2 dependence of an effective Pomeron intercept. This can be understood as a
consequence of diffusion. However, it is important to observe that the hard-wall model provides a much
better fit than the conformal result for Q2 less than the transition scale, Qc ∼ 2∼ 3 GeV 2. The best fit to
data is obtained using the hard-wall eikonal model, with a χ2 = 1.04. This is clearly shown by Fig. 2b,
where we present a comparison of the relative importance of confinement versus eikonal at the current
energies. (For more details, see Ref. [10].)

Confinement and Softwall: It is clear that, for Q2 small, confinement is important. We find that
confinement effect persists at an increasingly large value of Q2 as 1/x increases. Equally important is the
fact that that the transition scale Q2

c(x) from conformal to confinement increases with 1/x, and it comes
before saturation effect becomes important. Therefore the physics of saturation should be discussed in a
confining setting 2.

In order to test the generality of this observation, as well as other considerations, we turn next to
a brief discussion on the use of softwall model. The soft wall model was proposed as a holographic
approach [19] leading to linear meson trajectories 3. For our purpose, it is sufficient to focus on graviton
fluctuations and we shall simply treat this as a purely geometric confinement model 4.

In the softwall model, the graviton dynamics involve a spin dependent mass-like term α2( j) =
2
√

λ ( j− j0). Pomeron exchange corresponds to infinite set of Regge exchanges, labelled by tn =

Λ2(4n+ 2α + 2− 2c+(2α2/3− 3/8)) and the corresponding propagator can be written as combina-
tion of Whittaker’s functions and their Wronskian

χP( j,z,z′, t) =
Mκ,µ(z<)Wκ,µ(z>)

W (Mκ,µ ,Wκ,µ)
(5)

for κ = κ(t) and µ = µ( j) . Λ controls the strength of the soft wall and in the limit Λ→ 0 one recovers
the conformal solution, i.e., that in (4).

A softwall model also fits HERA data well, as shown in Fig. 2c, to the right. We provide in Table-1
a comparative quantitative analysis for various options. The fit using softwall treatment was done with
the same methods used previously for the conformal and hardwall models in [10], making the results
directly comparable.

Model ρ g2
0 z0 (GeV−1) Q’ (GeV) χ2

do f
conformal 0.774∗±0.0103 110.13∗±1.93 – 0.5575∗±0.0432 11.7 (0.75∗)
hard wall 0.7792±0.0034 103.14±1.68 4.96±0.14 0.4333±0.0243 1.07 (0.69∗)
softwall 0.7774 108.3616 8.1798 0.4014 1.1035

Table 1: Comparison of the best fit values for the conformal, hard wall, and softwall models.

If we look at the energy dependence of the Pomeron propagator, we can see a softened behavior
in the regge limit. In the forward limit, t = 0, the conformal amplitude scales as −sα0 log−1/2(s), but

2This has been stressed in [10]. In contrast, conventional treatment, e.g., color-glass condensate, assumes that saturation
scale can be understood perturbatively.

3Several dynamical softwall toy models, where the confinement is due to a non-trivial dilaton field, have subsequently been
constructed. See various references cited in [19]

4For our present purpose, we replace A in (1) by c(Λz)2/3− log(z/R), with c =±1. The choice for c remains a source of
debate,[20]. For this analysis, we shall keep c = −1, as originally done in [19]. The possibility of c = +1 will be addressed
elsewhere.
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this behavior is softened to −sα0 log−3/2(s) in the hardwall and softwall models This corresponds to
the softening of of a j-plane singularity from 1/

√
j− j0 →

√
j− j0. This observation is generic to all

confining scenarios, and its consequences will be explored further elsewhere.

Pomeron Intercept, DGLAP Connection, and Anomalous Dimensions: Let us examine briefly the
concept of a BPST Pomerorn in more general context of conformal field theories (CFT). A CFT 4-point
correlation function A = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 can be analyzed in an operator product expansion
(OPE) by summing over allowed primary operators Ok, j, with integral spin j and dimensions ∆k( j), and
their descendants. due to interaction, these conformal dimensions differ from their canonical dimension,
with γk( j) = ∆k( j)− j− τk, with twist τk.

Consider next the moments for the structure function F2, Mn(Q2)=
∫

dxxn−2F2(x,Q2). From OPE[18],
or, equivalently DGLAP evolution,

Mn(Q2)→ Q−γ(n) (6)

where γ(n) is the anomalous dimension for the twist-two operators, appropriate for DIS. In particular,
γ2 = 0, due to energy-momentum conservation. In our dual treatment, it is possible to identify γn by
our “dimension-spin" curve, ∆( j), with γ(n) = ∆(n)−n−2. At j = 2, the lowest twist-2 operator is the
dimension-4 energy-momentum tensor which assures γ2 = 0.

More generally, it was shown in [3] that ∆( j) is analytic in j, so that one can expand ∆( j) about
j = 2 as ∆( j) = 4+α1(λ )( j−2)+OG(( j−2)2), with the coefficient α1(λ ) =

√
λ/4+O(1). It was also

stressed in [3, 17] that the ∆− j curve must be symmetric about ∆ = 2 due to conformal invariance, and,
by inverting ∆( j), one has j(∆) = j(2)+α1(λ )

−1(∆−2)2 + · · · . At large λ , the curve j(∆) is parabolic
around its minimum at ∆ = 2 and constrained by j(4) = 2, as exhibited in Fig. 1b.

The Pomeron intercept is simply the minimum of j(∆) curve at ∆= 2, that is, j0 = j(2). In particular,
it admits an expansion in 1/

√
λ . In a systematic expansion [21, 17], one finds that αP = 2− 2

λ 1/2 − 1
λ
+

1
4λ 3/2 +

6ζ (3)+2
λ 2 + · · · , where terms upto 1/λ 3 have been found. A similar analysis also leads to systematic

expansion for the Odderon intercepts in 1/
√

λ . As explained in [5, 17], there are at least two leading
odderon trajectories. One has an expansion

αO,a = 1− 8
λ 1/2 −

4
λ
+

13
λ 3/2 +

96ζ (3)+41
λ 2 +

288ζ (3)+ 1249
16

λ 5/2 +
−720ζ (5)+192ζ (3)+ 159

4
λ 3 + · · · .

Interestingly, the second trajectory, remains at αO,b = 1, in dependent of λ .

Discussion: We have presented the phenomenological application of the AdS/CFT correspondence to
the study of DIS at small x, demonstrating the usefulness of the strong coupling BPST Graviton/Pomeron.
Encouraged by this, we plan to undertake a fuller study of several closely related diffractive process: total
and elastic cross sections, DIS, virtual photon production and double diffraction production of heavy
quarks, etc. The goal is that by over-constraining the basic AdS building blocks of diffractive scattering,
this framework will give a compelling phenomenology prediction for the double diffractive production
of glueballs, Higgs, etc., to aid in the analysis of LHC data.
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91ER40688, Task-A, and that of MD by FCT project CERN/FP/116358/2010.

6



P
o
S
(
D
I
S
2
0
1
5
)
0
8
9

Holographic at low-x Chung-I Tan

References

[1] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998), [arXiv:hep-th/9711200].

[2] E. Witten, Adv. Theor. Math. Phys. 2, 253-291 (1998), [hep-th/9802150].

[3] R. C. Brower, J. Polchinski, M. J. Strassler and C-I Tan, JHEP 0712, 005 (2007), [hep-th/0603115].

[4] R. C. Brower, M. J. Strassler and C-I Tan, JHEP 0903, 092 (2009), [arXiv:0710.4378 [hep-th]].

[5] R. C. Brower, M. Djuric and C-I Tan, JHEP 0907, 063 (2009), [arXiv:0812.0354 [hep-th]].

[6] E. Avsar, Y. Hatta and T. Matsuo, JHEP 1003, 037 (2010), [arXiv:0912.3806 [hep-th]].

[7] F. D. Aaron et al. [H1 and ZEUS Collaboration], JHEP 1001, 109 (2010), [arXiv:0911.0884 [hep-ex]].

[8] R. C. Brower, M. J. Strassler and C-I Tan, JHEP 0903, 050 (2009), [arXiv:0707.2408 [hep-th]].

[9] L. Cornalba, M. S. Costa, J. Penedones, R. Schiappa, Nucl. Phys. B767, 327-351 (2007), [hep-th/0611123].
L. Cornalba, M. S. Costa, J. Penedones, JHEP 0806, 048 (2008), [arXiv:0801.3002 [hep-th]].

[10] R. C. Brower, M. Djuric, I. Sarcevic and C-I Tan, JHEP 1011, 051 (2010), [arXiv:1007.2259 [hep-ph]].

[11] L. Cornalba, M. S. Costa, J. Penedones, Phys. Rev. Lett. 105, 072003 (2010).

[12] R. Nishio and T. Watari, Phys. Rev. D 84, 075025 (2011), [arXiv:1105.2999 [hep-ph]]; Phys. Lett. B 707,
362 (2012), [arXiv:1105.2907 [hep-ph]]; Phys. Rev. D 90, no. 12, 125001 (2014).

[13] A. Watanabe and K. Suzuki, Phys. Rev. D 86, 035011 (2012). [arXiv:1206.0910 [hep-ph]]; Phys. Rev. D 89,
no. 11, 115015 (2014), [arXiv:1312.7114 [hep-ph]]; A. Watanabe and H. n. Li, arXiv:1502.03894 [hep-ph].

[14] M. S. Costa and M. Djuric, Phys. Rev. D 86, 016009 (2012), [arXiv:1201.1307 [hep-th]]; JHEP 1309, 084
(2013) [arXiv:1307.0009 [hep-ph]].

[15] R. C. Brower, M. Djuric and C. I. Tan, JHEP 1209, 097 (2012), [arXiv:1202.4953 [hep-ph]]; Int. J. Mod.
Phys. A 29, no. 28, 1446013 (2014).

[16] Y. Hatta, E. Iancu and A. H. Mueller, JHEP 0801, 026 (2008) J. L. Albacete, Y. V. Kovchegov, A. Taliotis,
JHEP 0807, 074 (2008); Y. V. Kovchegov, Z. Lu, A. H. Rezaeian, Phys. Rev. D80, 074023 (2009). E. Levin,
I. Potashnikova, JHEP 1008, 112 (2010).

[17] R. C. Brower, M. S. Costa, M. Djuric, T. Raben and C. I. Tan, JHEP 1502, 104 (2015) [arXiv:1409.2730].

[18] J. Polchinski, M. J. Strassler, JHEP 0305, 012 (2003). [hep-th/0209211].

[19] A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D 74, 015005 (2006), [hep-ph/0602229];
B. Batell and T. Gherghetta, Phys. Rev. D 78, 026002 (2008), [arXiv:0801.4383 [hep-ph]]; E. Katz,
A. Lewandowski and M. D. Schwartz, Phys. Rev. D 74, 086004 (2006) [hep-ph/0510388].

[20] A. Karch, E. Katz, D. T. Son and M. A. Stephanov, JHEP 1104, 066 (2011), [arXiv:1012.4813 [hep-ph]];
G. F. de Teramond and S. J. Brodsky, Nucl. Phys. Proc. Suppl. 199, 89 (2010) [arXiv:0909.3900 [hep-ph]].

[21] B. Basso, arXiv:1109.3154 [hep-th]; M. S. Costa, V. Goncalves and J. Penedones, JHEP 1212, 091 (2012);
[arXiv:1209.4355 [hep-th]]; A. V. Kotikov and L. N. Lipatov, Nucl. Phys. B 874, 889 (2013);
[arXiv:1301.0882 [hep-th]]; N. Gromov, F. Levkovich-Maslyuk, G. Sizov and S. Valatka, JHEP 1407, 156
(2014) [arXiv:1402.0871 [hep-th]];

7


