
P
o
S
(
D
I
S
2
0
1
5
)
0
9
0

Rapidity evolution of gluon TMD from low to
moderate x

Andrey TARASOV
Jefferson Lab
E-mail: atarasov@jlab.org

We study evolution of the gluon transverse momentum dependent (TMD) operator using rapidity
factorization approach. The obtained rapidity evolution equation is valid at all values of the gluon
longitudinal momentum fraction x. At small values of x we apply the shock-wave approximation,
while at moderate-x we use the light-cone expansion formalism. The equation describes transition
between linear evolution at x∼ 1 and non-linear one at x� 1.
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Rapidity evolution of gluon TMD from low to moderate x

1. Introduction

At present, methods of analysis of a non-perturbative part of hadronic scattering processes are
limited. The standard way to overcome this obstacle and perform calculations in QCD is to use a
factorization approach. It implies that interactions at different scales can be disentangled from each
other. The non-perturbative hadron structure, in this case, is described by distribution functions,
which are universal and don’t depend on the process.

A good example of this is the transverse momentum dependent (TMD) distribution func-
tions. These functions depend on longitudinal momentum fraction and the transverse momentum
of the parton as well. There is a number of processes where these distributions are relevant: semi-
inclusive DIS, dijet production, etc. All of them involve quark TMDs. A study of this functions
started three decades ago [1], but the full treatment was published only recently, see [2, 3, 4].

In recent years, the attention of community was drawn to a new class of TMD distributions
with a gluon to be an active parton. That happened not only due to pure theoretical interest but the
role this functions will play at future machines like EIC [5] and LHeC [6], where gluons will make
the bulk of produced particles.

However, a rigorous treatment of gluon TMDs is yet to be presented.1 It should include non-
linear effects typical for small-x and contain transition to moderate-x. A subject of this notes is
the gluon TMD evolution. Here you will find a summary of results from [8, 9], where a detailed
analysis was presented.

2. Definitions

In this study we don’t discuss the problem of the TMD factorization at small-x and how it is
connected with the moderate-x approach. Instead, we start with the pure definition of the gluon
TMD operator

F̃ aη

i (x⊥,βB)F
aη

j (y⊥,βB) (2.1)

and consider its rapidity evolution. We are aware that the modern definition of the operator includes
the so-called soft factor [3]. However, the role of this factor at small-x is not clear, so for the
purpose of this work we don’t include it. As a result our definition is a product of two operators
with semi-infinite Wilson-lines:

F aη

j (y⊥,βB) ≡
2
s

∫
dy∗ eiβBy∗

(
[∞,y∗]am

y gFm
• j(y∗,y⊥))

η (2.2)

and its complex conjugation F̃ aη

i (x⊥,βB).
For the momentum vectors we use the standard Sudakov variables: k =α p1+β p2+k⊥, where

p1 and p2 are light-like vectors such that p1 = n is defined by the process and p2 = p− m2

s n, where
p is the momentum of the target of mass m. The corresponding coordinate variables are z• = zµ pµ

1
and z∗ = zµ pµ

2 . Connection with the usual light cone variables is very simple: z• =
√ s

2 z+ and
z∗ =

√ s
2 z−. It is obvious that one can interpret βB as the longitudinal momentum fraction. In this

study we want to obtain evolution of operator (2.1), which is correct for any value of βB.

1For the study of quark TMDs in the low-x region see recent preprint [7]
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Rapidity evolution of gluon TMD from low to moderate x

The Wilson-line operator

[∞,y∗]y = Pexp
[2ig

s

∫
∞

y∗
dz∗p

µ

1 Aµ(z∗,y⊥)
]

(2.3)

corresponds to the final state interactions with the target. Note that the line goes into +∞, which is
relevant to the SIDIS-like process and gluon fragmentation as well. The problem with an opposite
direction of the Wilson line was examined in [10].

3. Rapidity factorization

It is well known that there is a rapidity divergence in definition (2.1). We regularize it by a
rapidity cutoff η , so the gluon fields in the definition are restricted as

Aη
µ(x) =

∫ d4k
16π4 θ(eη −|α|)e−ik·xAµ(k). (3.1)

In a sense of rapidity factorization approach [11], one should understand the cutoff as a fac-
torization parameter between the impact factor and the matrix element. Our aim is to construct an
evolution of the TMD operator with η = lnσ , where σ is a corresponding cutoff in α .

We do it in a standard way. We shift the cutoff to a new value η ′ and integrate over "slow"
fields with rapidity η ′ < y < η , where y = lnα . We suppose that the "fast" fields with y < η ′

are fixed and serve as a background field. The typical diagrams are given in Fig. 1. We aim to
obtain evolution at the one loop order so there is only one "quantum" (blue) line of the "slow" fields
propagating in the "classical" (red) background of the "fast" fields. In calculation of this diagrams

(a) (b)

Figure 1: Typical diagrams for real (a) and virtual (b) gluon emission

we distinguish between two limits: k2
⊥ ∼ l2

⊥ and k2
⊥� l2

⊥, where k⊥ is a transverse momentum of
the "quantum" fields, while l⊥ is the characteristic transverse scale of the external fields.

It is easy to understand that the typical longitudinal distance traveled by the "slow" fields is
αs/k2

⊥ ∼ σs/k2
⊥. At the same time the longitudinal scale of the "fast" fields is σ∗ ∼ σ ′s/l2

⊥. We
suppose that σ � σ ′, so in the limit k2

⊥ ∼ l2
⊥ the "quantum" fields effectively propagate through

a thin area of the "fast" fields of the background. This is the shock-wave approximation: the red
(external) fields in Fig. 1 are concentrated within a segment (−σ∗,σ). Of course this segment is
very short, but in our calculation it is nevertheless finite. We consider propagation of the "quantum"
(blue) fields through this segment and expand the corresponding propagator in powers of k2

⊥
αs σ∗ ∼

σ ′

σ
� 1.
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Rapidity evolution of gluon TMD from low to moderate x

However, in the limit k⊥� l⊥ this scheme is not valid: there is no separation in distance be-
tween the "slow" and "fast" fields. Insteed of the shock-wave approximation, in this case we apply
the light-cone expansion approach [12]. We take a ration l⊥/k⊥ � 1 as an expansion parameter
and expand the gluon propagator in Fig. 1 around the light ray y⊥+ 2

s y∗p1, which is the direction
of the Wilson line in definition (2.1).

4. The Lipatov vertex

As usual, there are two contributions into the evolution kernel: the real gluon emission (Fig.
1a) and the virtual diagrams (Fig. 1b). The "real" correction to the TMD operator (2.1) is

〈F̃ a
i (x⊥,βB)F

a
j (y⊥,βB)〉lnσ = −

∫
σ

σ ′

d−α

2α
d−2k⊥

(
L̃ba;µ

i (k,x⊥,βB)Lab
µ j(k,y⊥,βB)

)lnσ ′
, (4.1)

where the Lipatov vertex Lab
µi(k,y⊥,βB) = i limk2→0 k2〈Aa

µ(k)F
b
i (y⊥,βB)〉 is an amplitude of the

single-gluon production by the operator F b
i . There are several possible types of emission. The

corresponding diagrams can be found in Fig. 2. We start with the calculation of the Lipatov vertex
k k k

(a) (b) (c)

Figure 2: Diagrams contributing into the Lipatov vertex

in the light-cone approach. We expand the gluon propagator around direction of the Wilson line and
neglect terms suppressed by l⊥/k⊥� 1. One can show that the leading contribution comes from
the terms linear in the gluon strength tensor F•i. The external (red) field has no specific longitudinal
properties and we take into account all possible emissions from the Wilson line and the strength
tensor in the definition (2.1) as well. The details of the calculation can be found in [9]. Here we
show only final result:

Lab
µi(k,y⊥,βB) = i lim

k2→0
k2〈Aaq

µ (k)(F b
i (βB,y⊥)

)1st〉 = 2ge−i(k,y)⊥

αβBs+ k2
⊥

(4.2)

×
[

αβBs
k2
⊥

(k2
⊥

αs
p2µ −α p1µ

)
δ

l
i −δ

l
µki +

αβBsgµikl

k2
⊥+αβBs

+
2αkikl

k2
⊥+αβBs

p1µ

]
F ab

l (βB +
k2
⊥

αs
,y⊥).

On the other hand, in the limit k⊥ ∼ l⊥ we apply the shock-wave approximation. In this case
the external field in Fig. 2 shrinks to fill a small area from −σ∗ to σ∗ in longitudinal direction.
Effectively the diagrams in Fig. 2 take a new look, which is presented in Fig. 3.

Now we take into account not only different types of emission, but the position of the emission
point as well: we separate the emission from the left, right sides and from inside of the shock-wave.
The sum of all diagrams in Fig. 3 is

Lab
µi(k,y⊥,βB) = 2ge−i(k,y)⊥

( p2µ

αs
−

α p1µ

k2
⊥

)
[Fi(βB,y⊥)−Ui(y⊥)]ab (4.3)
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Rapidity evolution of gluon TMD from low to moderate x

(a) (b) (c)

Figure 3: Lipatov vertex in the shock-wave approximation

+ g(k⊥|gµi
( αβBs

αβBs+ p2
⊥
−U

αβBs
αβBs+ p2

⊥
U†)+2α p1µ

( pi

αβBs+ p2
⊥
−U

pi

αβBs+ p2
⊥

U†)
+
[
2iβB p2µ∂iU−2i∂⊥µ U pi +

2p2µ

αs
∂

2
⊥U pi

] 1
αβBs+ p2

⊥
U†−

2α p1µ

p2
⊥

Ui|y⊥)ab.

In this calculation we expand the "slow" gluon propagator in powers of the size of the shock-wave
and neglect terms suppressed by p2

⊥
αs σ∗� 1.

The form of the Lipatov vertex in the limit k⊥� l⊥, see (4.2), and k⊥ ∼ l⊥, see (4.3), looks
very different. For example, (4.2) is linear in the gluon strength tensor, while (4.3) has non-linear
contributions, like ∂ 2

⊥U . However, we show that it is possible to combine two results and write an
interpolation formula:

Lab
µi(k,y⊥,βB)

= g(k⊥|
αβBsgµi +2α p1µki

αβBs+ k2
⊥

(2ik j
∂ jU−∂

2
⊥U)

1
αβBs+ p2

⊥
U† +2iα p1µ∂iU

1
αβBs+ p2

⊥
U†

+
2i
αs

p2µ∂iU
αβBs

αβBs+ p2
⊥

U†−
[
2i∂µU−

2p2µ

αs
∂

2
⊥U
] pi

αβBs+ p2
⊥

U†−
2α p1µ

p2
⊥

i(∂iU)U†|y⊥)ab

+
2ge−i(k,y)⊥

αβBs+ k2
⊥

[
−δ

j
µki +

2αkik j p1µ

αβBs+ k2
⊥
+

αβBsgµik j

αβBs+ k2
⊥
+βB p2µδ

j
i −α p1µ

αβBs
k2
⊥

δ
j

i

]
×
[
F j
(
βB +

k2
⊥

αs
,y⊥
)
−U j(y⊥)

]ab
. (4.4)

We show that in the limit k⊥ � l⊥ this expression simplifies to (4.2), while for k⊥ ∼ l⊥ it
reproduces formula (4.3). We prove that it is correct in the whole region of values of βB. It is also
important that (4.4) doesn’t break the gauge invariance: kµLab

µi(k,y⊥,βB) = 0. Finally, we use the
Lipatov vertex (4.4) to calculate the "real" part of the evolution kernel according to (4.1).

5. The virtual emission

The second part of the evolution kernel is the virtual correction, see Fig. 1b. For calculation of
this diagrams we apply the same strategy we used in derivation of the Lipatov vertex. In the limit
k⊥� l⊥ we expand the gluon propagator around y⊥+ 2

s y∗p1 direction and neglect terms suppressed
by l⊥/k⊥� 1. What is left is used in the explicit calculation of the diagrams if Fig. 1b. Note that
there are actually several of them, for details see [9].
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Rapidity evolution of gluon TMD from low to moderate x

(a) (b) (c) (d)

Figure 4: The virtual correction in the shock-wave approximation

In the limit k⊥ ∼ l⊥ we use the shock-wave approximation so the virtual emission diagrams
take a form, which is given in Fig. 4. We show that the sum of this diagrams can be combined with
the result obtained at k⊥� l⊥ and one can write a unified expression, which describes both limits
and is valid for all values of βB:

〈F n
i (y⊥,βB)〉virt = (5.1)

= − ig2 f nkl
∫

σ

σ ′

d−α

α
(y⊥|

p j

p2
⊥
(2∂i∂ jU +gi j∂

2
⊥U)

1
αβBs+ p2

⊥
U† +

αβBsp−2
⊥

αβBs+ p2
⊥

Fi(βB)|y⊥)kl.

6. Evolution equation for gluon TMD

Now we can write the one-loop correction to the operator (2.1). It is a sum of the product of
two Lipatov vertexes (4.4) and the virtual contribution (5.1):

〈F̃ a
i (x⊥,βB)F

a
j (y⊥,βB)〉lnσ

one−loop = −
∫

σ

σ ′

d−α

2α
d−2k⊥

(
L̃ba;µ

i (k,x⊥,βB)Lab
µ j(k,y⊥,βB)

)lnσ ′

+F̃ a
i (x⊥,βB)〈F a

j (y⊥,βB)〉virt + 〈F̃ a
i (x⊥,βB)〉virtF a

j (y⊥,βB). (6.1)

To get the evolution equation we differentiate this expression over σ . Combining all results
together we get

d
d logσ

〈p|F̃ a
i (x⊥,βB)F

a
j (y⊥,βB)|p〉 (6.2)

= −αs〈p|Tr
{∫

d−2k⊥θ
(
1−βB−

k2
⊥

σs

)[
(x⊥|

(
Ũ

1
σβBs+ p2

⊥
(Ũ†kk + pkŨ†)

×
σβBsgµi−2k⊥µ ki

σβBs+ k2
⊥

− 2k⊥µ gikŨ
1

σβBs+ p2
⊥

Ũ†−2gµkŨ
pi

σβBs+ p2
⊥

Ũ†
)
F̃ k(

βB +
k2
⊥

σs

)
|k⊥)

× (k⊥|F l(
βB +

k2
⊥

σs

)(σβBsδ
µ

j −2kµ

⊥k j

σβBs+ k2
⊥

(klU +U pl)
1

σβBs+ p2
⊥

U†

−2kµ

⊥g jlU
1

σβBs+ p2
⊥

U†− 2δ
µ

l U
p j

σβBs+ p2
⊥

U†
)
|y⊥)

+ 2(x⊥|F̃i
(
βB +

k2
⊥

σs

)
|k⊥)(k⊥|F l(

βB +
k2
⊥

σs

)( k j

k2
⊥

σβBs+2k2
⊥

σβBs+ k2
⊥
(klU +U pl)

1
σβBs+ p2

⊥
U†

+ 2U
g jl

σβBs+ p2
⊥

U†−2
kl

k2
⊥

U
p j

σβBs+ p2
⊥

U†
)
|y⊥)

+ 2(x⊥|
(

Ũ
1

σβBs+ p2
⊥
(Ũ†kk + pkŨ†)

ki

k2
⊥

σβBs+2k2
⊥

σβBs+ k2
⊥

+2Ũ
gik

σβBs+ p2
⊥

Ũ†
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Rapidity evolution of gluon TMD from low to moderate x

− 2Ũ
pi

σβBs+ p2
⊥

Ũ† kk

k2
⊥

)
F̃ k(

βB +
k2
⊥

σs

)
|k⊥)(k⊥|F j

(
βB +

k2
⊥

σs

)
|y⊥)

]
+ 2F̃i(x⊥,βB)(y⊥|−

pm

p2
⊥

Fk(βB)(i
←
∂ l +Ul)(2δ

k
mδ

l
j −g jmgkl)U

1
σβBs+ p2

⊥
U†|y⊥)

+ 2(x⊥|Ũ
1

σβBs+ p2
⊥

Ũ†(2δ
k
i δ

l
m−gimgkl)(i∂k−Ũk)F̃l(βB)

pm

p2
⊥
|x⊥)F j(y⊥,βB)

− 4
∫ d−2k⊥

k2
⊥

[
θ
(
1−βB−

k2
⊥

σs

)
F̃i
(
x⊥,βB +

k2
⊥

σs

)
F j
(
y⊥,βB +

k2
⊥

σs

)
ei(k,x−y)⊥

− σβBs
σβBs+ k2

⊥
F̃i(x⊥,βB)F j(y⊥,βB)

]}
|p〉 + O(α2

s ).

The formula (6.2) is the main result of our study. It is an evolution equation of the gluon
TMD operator (2.1) and is valid for all (except too small) values of transverse momentum k⊥ ∼
(x⊥− y⊥)−1 and longitudinal momentum fraction variable βB.

This result contains different kind of dynamics typical for different values of the kinematic
variables. We show, that with a proper approximations this equation reproduces a set of known
limits. At x∼ 1 (in our notation x is equivalent to βB) and large transverse momentum it yields the
linear moderate x dynamics with the DGLAP equation in the collinear case. At x ∼ 1 and small
k⊥ we get the Sudakov double logarithm evolution. While at small-x it reduces to the non-linear
equation of the Balitsky-Kovchegov (BK) type.

The author is grateful to G.A. Chirilli, J.C. Collins, Yu. Kovchegov, A. Prokudin, A.V.
Radyushkin, T. Rogers, M.D. Sievert and F. Yuan for valuable discussions. This work was sup-
ported by contract DE-AC05-06OR23177 under which the Jefferson Science Associates, LLC op-
erates the Thomas Jefferson National Accelerator Facility.
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