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1. Introduction

All of the astrophysical and cosmological evidence for dark matter has yet to reveal whether it
has any non gravitational interactions with the standard model (SM). The WIMP Miracle presents
a particularly compelling link between the weak scale and dark matter (see [1]), leading to an
O(TeV)-mass particle with electroweak-strength coupling. We consider here the case of the wino,
that belongs to a supersymmetric explanation of the weak scale.

A nearly pure wino emerges as the lightest supersymmetric particle (LSP) [2] in theories of
anomaly-mediated SUSY-breaking. If we assume that the wino constitutes all of the dark matter
and that its relic density was set at freeze-out, then the mass is constrained to the window MWino ≡
(Mχ) = 2.7-2.9 TeV [3, 4].

The direct detection cross section for a TeV wino to scatter off nucleons is σ ∼ 10−47 cm2,
putting it far below current limits [5, 6]. However, since the wino can annihilate directly to photons,
by searching for monochromatic, O(TeV) photon lines, we can hope to discover it via indirect
detection. The authors of [3, 7] used limits from the HESS Cherenkov telescope to argue that
the nonobservation of such a photon feature put wino DM in severe tension with experiment. In
particular, [7] calculated the annihilation rate to be ∼ 15× larger at Mχ = 3 TeV than the HESS
limit.

However, this analysis is subject to astrophysical uncertainties. [3, 7] consider variations of
the DM halo profile for the galaxy. To alleviate the tension with HESS, some amount of coring
will be necessary to return pure wino dark matter to viability, but the question, which we answer in
Section 5, is how much?

The annihilation rate of two heavy WIMPs (Mχ �MW ), which are nonrelativistic, is plagued
by infrared (IR) divergences which are cut-off by the gauge boson mass, MW ∼ 100 GeV. These
corrections are of two types:1 Potential interactions of the slowly-moving DM and scales as powers
of αW Mχ

MW
& 1; the resummation of these corrections results in a Sommerfeld enhancement to the rate

[8]. The second type of IR sensitivity is a Sudakov double-log, αW log(
M2

χ

M2
W
)2, which arises due to

the non-singlet nature of our external states. This effect is known as “Bloch-Nordsieck Theorem Vi-
olation” [9, 10]. We derive a factorization theorem to calculate the leading-log (LL) semi-inclusive
wino annihilation rate (χ0χ0→ γ +X) which is the relevant observable for constraining the wino
with HESS since only a single hard photon from annihilation is measured and the resolution of the
experiment is too poor to distinguish two-body from n-body annihilation (e.g. χ0χ0→ γ +W+W−)
[12]. Despite the fact that both the Sommerfeld and Sudakov effects arise from the same hierarchy,
Mχ �MW , they can be factorized through a mode decomposition of the relevant fields.

We resum Sudakov logs and present our analysis of the Sommerfeld enhancement for the
particular case of wino dark matter. We find that compared to tree level plus Sommerfeld corrected
rate, the leading-log radiative corrections lead to a few-percent reduction in the rate . We also
present exclusion plots for wino dark matter as a function of the mass, the amount of coring in the
dark matter profile, and the wino fraction of the dark matter.

1The term "divergences" is used despite the fact that the rate is physical.
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2. Factorization

To develop a factorization theorem it helps to work in an EFT, which in our case is a hybrid of
SCET and NRQCD that power counts in a double expansion in v, the relative velocity of the DM
particles and λ = MW/Mχ . We will work to leading order in both these parameters, which seems
quite reasonable until a discovery is made. The momentum modes we need in our EFT are modes
for which, either all components of momenta are small (soft modes) (n̄ · p, n · p, p⊥)∼Mχ(λ ,λ ,λ )

or collinear with p∼Mχ(1,λ 2,λ )(SCETII). We choose a lightlike-vector n̄ for the direction of the
final jet containing the observed photon where n = (1,0,0,1).

We build a factorization theorem at the level of the amplitude squared integrating out all final
state particles except the final state jet containing observed photons and accompanying unobserved
particles . We thus match the full theory onto a set of operators with six fields, corresponding to
the incoming winos and the outgoing, collinear, photon. The minimal operator basis that we can
write down is

O1 =
(
χ̄γ

5
χ
)
|0〉〈0|

(
χ̄γ

5
χ
)

BµA⊥BA⊥
µ

O2 =
1
2

{(
χ̄γ

5
χ
)
|0〉〈0|

(
χ̄Aγ

5
χB
)
+
(
χ̄Aγ

5
χB
)
|0〉〈0|

(
χ̄γ

5
χ
)}

B⊥A
µ BµB⊥

O3 =
(
χ̄Cγ

5
χD
)
|0〉〈0|

(
χ̄Dγ

5
χC
)

BµA⊥BA⊥
µ , O4 =

(
χ̄Aγ

5
χC
)
|0〉〈0|

(
χ̄Cγ

5
χB
)

B⊥A
µ BµB⊥,(2.1)

where we use the vacuum insertion approximation in the WIMP sector, which is valid up to O(v2)

corrections. Henceforth, we drop the explicit vacuum projector. Implicitly, there is also a projection
onto a single-photon state between the Bµ⊥ fields i.e.

B⊥A
µ BµB⊥ ≡∑

X
B⊥A

µ | γ +X〉〈γ +X | BµB⊥. (2.2)

where X contains the accompanying particles in the collinear jet. The only relevant nonrelativistic
bilinear is χ̄γ5χ . The B field here interpolates for a collinear gauge boson (for details see [13]).

There is method which we call the “method of descent", developed in [17] which allows us to
place the Soft Wilson lines which dresses the operators such that O2 and O4 become

O2 =
1
2

{
(χ̄γ

5
χ)(χ̄A′γ

5
χB′)+(χ̄A′γ

5
χB′)(χ̄γ

5
χ)
}

BÃBB̃

S>vA′A SvBB′ S>nÃA SnBB̃

O4 = (χ̄A′γ
5
χC)(χ̄Cγ

5
χB′)BÃBB̃ S>vA′A SvBB′ S>nÃA SnBB̃. (2.3)

The operators O1 and O3 receive no soft corrections. The annihilation spectrum may be written as

1
Eγ

dσ

dEγ

=
1

4M2
χv
〈0|Oa

s |0〉

[∫
dn · p

{
C2(Mχ ,n · p)〈p1 p2 |

1
2

{
(χ̄γ

5
χ)(χ̄A′γ

5
χB′)

+ (χ̄A′γ
5
χB′)(χ̄γ

5
χ)
}
(0) | p1 p2〉+C4(Mχ ,n · p)〈p1 p2 | (χ̄A′γ

5
χC)(χ̄Cγ

5
χB′)(0) | p1 p2〉

}
Fγ

ÃB̃

(
2Eγ

n · p

)]

+

[∫
dn · p

{
C1(Mχ ,n · p)〈p1 p2 | (χ̄γ

5
χ)(χ̄γ

5
χ)(0) | p1 p2〉+C3(Mχ ,n · p)
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× 〈p1 p2 | (χ̄Cγ
5
χD) (̄χDγ

5
χC)(0) | p1 p2〉

}
Fγ

(
2Eγ

n · p

)]
, (2.4)

where Oa
s = ST

vA′ASvBB′ST
nÃASnBB̃ and Fγ

ÃB̃
is a fragmentation function defined by

Fγ

ÃB̃

(
n · k
n · p

)
=
∫ dx−

2π
ein·px−〈0 | B⊥µ

Ã
(x−) | γ +Xn〉〈γ +Xn | B⊥µB̃(0) | 0〉, (2.5)

and Fγ = Fγ

ÃB̃
δÃB̃. Note that this is an unusual fragmentation function in that we are measuring

states which are not gauge singlets. C1−4 are the matching coefficients and Fγ is the canonical
fragmentation function giving the probability of an initial photon with momentum k to yield a
photon with momentum fraction n · k/n · p after splitting.

Thus, we factorized the collinear and soft fields, as the total Hilbert space of the system is a
tensor product of the soft and collinear sector.

3. Calculating the Anomalous Dimension

We first introduce an operator basis in the collinear and soft sectors

Oa
s = ST

vA′ASvBB′ST
nÃASnBB̃ Ob

s = δÃB̃δA′B′

Oa
c = B⊥Ã | γ(kn)+Xn〉〈γ(kn)+Xn | B⊥B̃

Ob
c = B⊥D | γ(kn)+Xn〉〈γ(kn)+Xn | B⊥DδÃB̃. (3.1)

The divergences, that arise from the factorization of the soft sector from the collinear needs a
rapidity regulator[16]. This requires a corresponding factorization scale which we call ν . The
operators mix within their respective sectors and we can define anomalous dimension matrices for
the scales µ and ν as follows

µ
d

dµ

(
Oc,s

a

Oc,s
b

)
=

(
γ

c,s
µ,aa γ

c,s
µ,ab

0 0

)(
Oc,s

a

Oc,s
b

)
, ν

d
dν

(
Oc,s

a

Oc,s
b

)
=

(
γ

c,s
ν ,aa γ

c,s
ν ,ab

0 0

)(
Oc,s

a

Oc,s
b

)
. (3.2)

The anomalous dimensions are given by

γ
c
µ,aa =

3g2

4π2 log(
ν2

4M2
χ

), γ
s
µ,aa =

−3g2

4π2 log(
ν2

µ2 ),

γ
c
µ,ba =

−g2

4π2 log(
ν2

4M2
χ

), γ
s
µ,ba =

g2

4π2 log(
ν2

µ2 ). (3.3)

γ
c
ν ,aa =

3g2

4π2 log(
µ2

M2
W
), γ

s
ν ,aa =

−3g2

4π2 log(
µ2

M2
W
),

γ
c
ν ,ba =

−g2

4π2 log(
µ2

M2
W
), γ

s
ν ,ba =

g2

4π2 log(
µ2

M2
W
). (3.4)

At leading double log accuracy we can resum all of the relevant terms by choosing µ =MW . We can
read off the running of the hard matching coefficients C1−4 of the operators in Eq. 2.1 by imposing
that the cross section be RG invariant
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µ
d

dµ
C2,4(µ) = −(γc

µ,aa + γ
s
µ,aa)C2,4

µ
d

dµ
C1,3(µ) = −(γc

µ,ba + γ
s
µ,ba)C2,4. (3.5)

Notice that the RHS of Eq. 3.5 is independent of the rapidity scale as it must be. We have C1 =C4,
C3 = 0 and C2 =−2C1 when matching at the high scale Mχ . The cross section can now be obtained
by evaluating the effective theory matrix elements at their natural scale µ ∼MW . At the low scale,
we are working in the broken theory, where the mass eigenstates are the neutralino χ0 and the
charginos, χ±, which are defined as

χ
0 = χ

3, χ
± =

1√
2
(χ1∓ iχ2) (3.6)

We obtain the final form of the cross section up to corrections in the relative velocity (which is of
the order of 10−3c) [11].

1
Eγ

dσ

dEγ

=
C1(µ = Eγ)

4M2
χ v

δ (Eγ −Mχ)

[
2
3

f− |ψ00(0) |2 +2 f+ |ψ+−(0) |2

+
2
3

f−(ψ00ψ+−+h.c.)
]

(3.7)

where f± ≡ 1± exp[−3αW
π

log2(MW
Eγ

)]. We define the wavefunctions as

ψ00 = 〈0|χ̄0
γ

5
χ

0|χ0
χ

0〉S, ψ± = 〈0|χ̄+
γ

5
χ
+|χ0

χ
0〉S (3.8)

where |χ0χ0〉S = 1√
2
(|χ0
↑ (p1)χ

0
↓ (p2)〉− |χ0

↓ (p1)χ
0
↑ (p2)〉).

In order to fix the Wilson coefficient C1, we match onto the tree level annihilation cross section
of a spin singlet chargino state 1√

2
(|χ+
↑ (p1)χ

−
↓ (p2)〉− |χ+

↓ (p1)χ
−
↑ (p2)〉).

4. Sommerfeld Enhancement

In order to quantify the semi-inclusive rate calculation, we need to determine the wavefunction-
at-the-origin factors that enter our final, LL-resummed differential cross section in Eq. 3.7. The
wavefunctions themselves are defined in Eq. 3.8 and can be computed in principle in the nonrel-
ativistic effective theory by summing the ladder exchange of electroweak gauge bosons between
winos to all orders. Fortunately, this is equivalent to the operationally simpler task of solving
the Schrödinger equation for our two, two-body states |χ0χ0〉 and |χ+χ−〉 in the presence of the
electroweak potential, details of which can be found in [8, 18, 19].

5. Dark Matter Constraints and Conclusion

We can now evaluate the differential cross section for χ0χ0→ γ +X , given in Eq. 3.7. We plot
this in Fig. 1, where we have digitized the HESS limits given [15]. We note that in contrast to those

5
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Figure 1: Annihilation cross section to γ +X . Exclusion taken from [15], assuming an NFW profile.

groups that performed an exclusive two-body calculation, [14, 15], we find the effect of higher
order correction to be very modest. This difference is to be expected given the distinct difference
in our choice of observables.

The limit from HESS in Fig. 1 shows that the thermal relic wino, Mχ ≈ 3 TeV is ruled out
by more than an order of magnitude. Unfortunately, the astrophysical uncertainties in the halo
profile are sufficient to evade an excess of even this size. Discussions on the ability of different
halo models to evade constraints can be found in the earlier papers that found the wino to be in
tension with HESS [7, 3]. The exclusion curve we have taken from [15] assumes an NFW profile
[20] with a local density, ρloc = 0.4 GeV/cm3 [21, 22], and rs = 20 kpc [23], In the discussion that
follows, we fix the local density ρloc = 0.4 GeV/cm3, but we will change the functional form of the
distribution along with a possible core radius. It is possible though, that the local density could lie
somewhere in the range of 0.2-0.6 GeV/cm3 [23]. One can ask, how much coring is needed to save
the wino, given our LL-resummed annihilation rate? For an NFW profile that becomes constant
below a certain radius,

ρcutoff−NFW(r) =

{
ρ0

(r/rs)(1+r/rs)2 r > rc
ρ0

(rc/rs)(1+rc/rs)2 r ≤ rc
(5.1)

in Fig. 3 we plot the value of the core radius, rc, needed to make our semi-inclusive rate calculation
consistent with the limit from HESS.
The observation of wino dark matter near the thermal relic mass of 3 TeV would point to the exis-
tence of a nontrivial amount of coring in the halo of the galaxy which would require an explanation.
However, there is the possibility that the lightest neutralino may not be a pure wino. For example,
a thermal relic higgsino is far from constrained, and thus admixtures between these states could
certainly be allowed [3]. Sticking with the pure wino, if there were some non-thermal mechanism
for its production, then the limit at values other than 3 TeV would be relevant, and Mχ could be in
one of the allowed regions shown in Fig. 1.

Alternatively the wino could make up just a fraction of the dark matter, and thus much of
parameter space would remain open, as shown in Fig. 2. The discovery of a wino at future indi-
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Figure 2: Exclusion plot for an NFW profile with the wino making up only some fraction of the dark matter.
Expression for NFW profile with coring given in Eq. 5.1.

Figure 3: The amount of coring required for the wino to become viable with respect to the HESS constraint
shown in Fig. 1 for the cutoff-NFW profile (Eq. 5.1). The three curves display the effect of variation in the
local dark matter density.

rect detection experiments, such as CTA [24], could give us important windows into further open
questions such as the halo distribution, cosmological history of DM production, and the presence
of multi-component dark matter.
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