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1. Introduction

With the restart of the LHC at an unprecedented 13 TeV cafterass energy, the search
for beyond-standard-model particles continues. For aessfal achievement of the goals of this
second run, precision is vital from both theory calculagi@md experimental measurements. Due
to the inevitable hadronic environment involved at the Lid@ere for example most Higgs studies
are overwhelmed by QCD background, analytic estimates dD @Q@servable cross-sections will
continue to play a central role leading either to the systenraprovement/tuning of Monte Carlo
event generators, or to the development of better methodaakiground elimination.

The resummation of large logs, resulting from the realfaltmis-cancellation of soft and/or
collinear singularities in the matrix element, is perhaps tost challenging QCD perturbative
aspect when one attempts to make an estimate of the crassseta given observablg. For
observables that are sensitive to emissions in the entgel@anphase space, and which are termed
“global” observables, the resummed distribution maybe icéxs the general form:

o(V) Oexp(Lgi(ask) +ga(ask) + asgs(ask) + adga(asl) + - ) (1.1)

wherelL is the large log of the observable The functionsg,, g, ..., respectively resum leading
logs (LL), next-to-leading logs (NLL)....

While the development of the resummation programme forajlobservables has seen sub-
stantial progress in recent years, achieving up to NNNLLueazy (i.e. up togs in eq. (1.1)),
e.g. for theC-parameter distribution [1], and even semi-automatic mewation to NLL [2] and
NNLL [3], progress in the resummation of “non-global” obs&vles [4, 5] has been very limited.
Non-global observables are those which are sensitive testoms in restricted regions of the an-
gular phase space, and as a result their distributionsrduffien non-global logs (NGLs). There
are several important observables that are non-globaltetdte widely used in studies relevant
to new physics searches, such as jet mass and single hensigiservables.

There are two main reasons that have long jeopardised mogréhe resummation of NGLs.
Firstly, the treatment of cascade gluon branching is ex¢hgraumbersome within perturbation
theory. Secondly, the phase-space integrations that an¢éohgerform are prohibitive at higher
orders due to non-iterative geometry involved in the calboh. A practical solution to the above
hindrances is resorting to the large-abproximation, with ¥ being the number of quark colours,
which amounts to discarding non-planar Feynman diagrars [fhe calculation of amplitudes
of soft gluon emissions, leading to considerable simplitbces. Specifically this approximation is
equivalent to the leading-order expansion of the coloutofaCr = N¢/2 — 1/2N; ~ N¢/2. Fur-
thermore, a convenient approach to deal with the multi-dsf@nal integrations is restoring to
numerical Monte Carlo methods. The numerical resummatfdi@Ls at large N was first per-
formed in the pioneering work of Dasgupta and Salam [4].

There has recently been an increasing interest in litegdatuthe calculation of NGLs both
at fixed order and to all orders. In ref. [7], Rubin numerigadvaluated NGLs at large JNfor
both filtered Higgs jet mass and interjet energy flow up tohsotider inas. Hatta and Ueda [8]
performed a numerical resummation of NGLs based on the Wegggiation [9], accounting for
NGLs at finite N, to all orders. A similar equation that was developed by Bavéirchesini and
Smye, the BMS equation [10], and whose solution accountghirall-orders resummation of
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NGLs at large N, was the subject of study by Schwartz and Zhu in ref. [11], mtibe analytic
solution up to fifth order was achieved.

The aim of this work is to address the question of how the aayuof resummation of NGLs
is affected by the large-Napproximation. For this, and other reasons, we perform tiadytic
calculation of NGLs at finite Nup to fifth order. In the next section we define the observdide t
we use to illustrate the calculation of NGLs, namely the lsifgemisphere mass distribution in
et e~ — qq. In section 3 we show the results for the NGLs up to fifth ordérich are then used to
make an anstaz for the all-orders (partial) resummation@E8linto an exponential form. We also
compare, in the same section, our findings to those repotiadya N. by Schwartz and Zhu [11].
In section 4 we perform a comparison with the numerical tssabtained by Dasgupta and Salam
[4] and discuss the implications of our results. Finally wensnarise and give future directions of
this work in section 5.

2. Observable and kinematics

We are interested in the calculation of NGLs at finite ib to fifth order. For illustrative
purposes we choose to study the simple proegss — qq accompanied by the emission of soft
energy-ordered gluong, as depicted in figure 1. The quark and anti-quark directgtermine

kq 1 Ky !
: : Measured hemisphere
ko
1

=
HR

1
1
! q
1
1

Q|
- - -
Ko}
O

Figure 1: Diagrams for gluon emission from an outgoiggdipole, relevant for NGLs calculation.

two back-to-back hemispherex{ and.sz&. We consider for measurement the right hemisphere
R and calculate its normalised invariant masdefined by:

2
p=<pq+ > M) /P2y ki-pg/Q, (2.1)
i€ AR i€k
whereQ is the center-of-mass energy apglandk; are the four-momenta of the quark and gluons,
respectively.
The integrated hemisphere-mass distribution, normatsége Born cross-sectiony, is:

P 1 do
o(p) = /0 god—p,dp’ =1+01(p)+02(p) +++, (2.2a)
Om= ; / A Ze 5. (2.2b)

where“//lé,,,m = V/X(kl,kz,...,kng represents the eikonal squared amplitude, normalisedeto th
Born squared amplitude, for the emissiomoénergy-ordered gluons angiglis the corresponding
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phase space. The sum ovéraccounts for all possible real/virtual configurations o tadiated
gluons. Themeasurement operato??m plays the role of an event selector, i.e. it forbids real
emissions inta##k which contribute more thap to the hemisphere mass.

In order to be able to compute the cross-section (2.2), therseveral issues that need to be
addressed. First, one must evaluate the gIuon-emissicmemmmplitude#ﬂlé___m, including all
the possible real-virtual configuratiodsat each order in the perturbation series (our aim is up to
fifth order). The calculation of such amplitudes is nonididue to the complexity of the colour
algebra involved as well as the factorially growing numbeFeynman diagrams that one has to
account for at each order. Further details about the cortipataf these eikonal amplitudes, which
involves using thévat hemat i ca packageCol or Mat h [12], are to be found in our work in refs.
[13, 14].

The second task is to apply the measurement operator acgalithe various real-virtual
gluon configurations in order to extract the appropriatespkspace region of integration for each
gluon. Doing so the final task is to perform the relevant mdlilthensional integrations in eq.
(2.2). At fourth order, for instance, the integral is sedimensional and was performed semi-
analytically.

3. Non-global logs up to fifth order at finite N¢
We can write the integrated hemisphere mass distributic?) é:

a(p) = 0%(p) x aN®(p), (3.1a)
o3(p) = exp(—CrasL?), (3.1b)

whereL = In(1/p) and as = as/m. We have factorised the distribution into the product of a
Sudakov form factooS, that resums double logs originating from soft-collineamary emissions,
times a non-global factasN®, that resums single logs originating from soft wide-angleomidary
correlated emissions.

We express the non-global factor as a series in the cougiantirgy from second order, where
NGLs first appear, up to fifth order as follows:

L2 L3 L* /25 13
0"%(p) =1— 5;CeCalo + 5;CrCRLs - ( o CFCALa— ciz%) -
LS LS Cr 1
2|3|CFCAZ253+ CFCAZS a+B <_; _§>:| +ﬁ(a56)7 (32)

with L = asL, Ca = N, anda andp are constants that are yet to be determined.
To compare our result (3.2) with that obtained in ref. [11llaae N., by means of analytic
solution to the BMS equation, we simply make the substitu@@ — N¢/2, leading to:

s 53 U {3 a % =
NG 5 6

(3.3)

o

which exactly agrees with the result arrived at in ref. [1fi]Jta fourth order. Furthermore, at fifth
order we can extract the value of the undetermined conatéytcomparison with the result in ref.
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[11] and we obtainr = 17/2+ {>{3/{s. We can also further make an anstaz for the congant
based on the pattern of zeta functions observed at previolesf3 = 2{,{3/{s.

In order to check the impact of finitecNorrections (relative to larged\esult) on the distri-
bution, we compare the result at large (¢q. (3.3)) to that at finite N(eqg. (3.2)). We find that at
fourth order the size of finite-Nresult constitutes merely a#i(1.5%) correction to the large-p\re-
sult. This observation is in accordance with that made in[8fby means of numerical evaluation
of NGLs at finite N. through a solution to the Weigert equation.

We note that the series of NGLs in eq. (3.2) adheres a patt@amexpansion of an exponential
function:

L2 L3 L4 29 /Cr 1
NG 2 3 F
= ——CC —CeC2l3— —CeC3 74 |+ ([ F -2
g™ (p) exp( o7 CF A52+3! FCad3 21 CF AZ4[8+<CA 2>]+
+§CFC155 [CH-B <C_A - E)} +ﬁ(as)>
L2 L3 L4 [25 2
:exp<_ECFCAZZ + ECFC,%\ZS ~ [gCFCiZ4+ EC;%CiZ§] +
L5[17 . 3 5
57 | 5 CFCAGs +2CECRExGs | +0(as) | (3.4)

where we substituted the values@fand 3 based on the observations discussed above. The first
form of the above exponential explicitly displays the firidg corrections, whilst the second form
focuses on disclosing the pattern of the Zeta functions.

To determine the convergence of the series in the exponesn.o{3.4), we plot in figure 2
the ratioo™®/ exp(oN®), with o) = —L2/2! x CkCa{, being the second-order NGLs function
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Figure 2: Plot of the ratioo™N¢/ exp(a)'©).

in the exponent. In figure 2 we show truncations of the setidisiral, fourth and fifth orders. It is
clear from the curves that the third, fourth and fifth-ordamnts in the exponent form a significant
0 (30%) contribution (particularly at larger values 5}, meaning that the series converges very
slowly. It also means that more terms of the series in the mapioare needed for a phenomenolog-
ically reliable estimate of the all-orders behaviour of digtribution.
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4. Comparison to numerical results at large N

In this section we compare the results we obtained for themmesed NGLs, the exponential
form (3.4), with the numerical all-orders resummed resbtamed by Dasgupta and Salam at large
N via a Monte Carlo approach [4]. Their numerical result isapaeterised as follows [4]:

1+ (0.85Cat)?
NG 2
t) = —CeCar— t 4.1
905 (1) eXp( F~A 3 14 (0.86Cat)133 > (4.1)
with the evolution parametérgiven by:

1 1 4.2)

t———|
AmBo " 1—2Boasl

and 3 is the leading-order coefficient of the QQPfunction. We show in figure 3 (on the left)

a plot of the functions$ (eq. (4.1)) andoN® (eq. (3.4)) with various truncations of the NGLs
series in the exponent of eq. (3.4). We also show in the sameef(gn the right) a plot of the ratio

of the two functions.
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Figure 3: Left: Plot of the functionsr$ ando™N® with various truncations of the NGLs series. Right: Plot
of the ratioo™®/g}S.

It is clear from the plots, particularly the right-handesidne, that as one adds more terms
in the exponent of eq. (3.4), one obtains larger intervaltfag fromt = 0 and spanning over
large values ot) over which there is an agreement between the analyticah {&4) and the
parameterised form of the Monte Carlo output (4.1). Thisokstion means that it may suffice to
compute just a few more higher-order terms in order to ol@igneement between the two functions
for a phenomenologically sufficient interval ©flt is worth noting that the second-order result has
the peculiar feature that it represents the best fit to therdlrs result over the full range of
considered.

5. Summary and outlook

In this work we addressed the calculation of NGLs at finitedisingle log accuracy up to
fifth order for hemisphere mass distributionehe™ — 2 jets. This was achieved through a brute-
force method in which we integrated eikonal squared ang#iover the appropriate phase space.
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We observed that the obtained series of NGLs suggest a ppssgummation into an exponential
form. When expanded to leading order in colour, our resugety reproduce those obtained at
large N. by means of the analytical solution to the BMS equation. Hseilts we obtained agree
with the statement made in ref. [8] that finite-bbntribution forms a small correction to the large-

N. result, meaning that the large-Mpproximation is a good one, at least in the contexa e~
collisions.

Our next task in this work is to go beyond fifth order in the aédtion of the series of NGLs
in an attempt to confirm the structure of the resummationamtexponential form. In addition we

plan to extend this work by analytically investigating tHfeet of jet clustering on the hemisphere
mass as well as other jet-shape distributions.
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