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soft energy-ordered gluons we solve both the colour and kinematic structures at a given order

in perturbation theory by means of a Mathematica program that relies solely on a recently

developed Mathematica code, ColorMath, that evaluates the trace of products of colour
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1. Introduction

The recent runs of the Large Hadron Collider (LHC) at CERN, the substantial data collected

and its subsequent analyses have opened a new era of what might be referred to -in analogy with the

Electroweak theory- as “QCD precision measurements”. For instance, the strong coupling constant

αs has recently been determined by the CMS collaboration with experimental uncertainties that are

much smaller than their theoretical counterparts [1]. Moreover, some recent experimental analyses

even concluded with a stress on the necessity for higher fixed-order calculations and/or matching

with resummed results in order to better describe the data [2]. It is thus necessary, perhaps more

than ever before, that more efforts should be spent by the theory community on “QCD precision

calculations”. For this reason, and others, the present work has been carried out.

It is well known that the main limiting factor in QCD calculations is the scattering amplitude

(or matrix-element). Typical, and generally only possible, QCD calculations rely on perturbation

theory (PT) in which the matrix-element is expanded as a series in the strong coupling αs which

becomes small at high energies (asymptotic freedom) ensuring the convergence of the series. In

most QCD processes only the first few orders in PT expansion have been computed, with the most

difficult calculational challenges coming from virtual (loop) Feynman diagrams.

One of the very useful approximations used during the last few decades whereby calculations

of matrix-elements are substantially simplified -particularly virtual corrections- is the “eikonal ap-

proximation” (or equivalently the “soft insertion rules”) [3, 4, 5]. In QCD, this approximation

corresponds to the limit where the momenta of the radiated gluons are soft. The standard Feynman

rules are then replaced by the effective eikonal Feynman rules. Amongst the important character-

istics of the eikonal approximation is its all-orders exponentiation for both abelian and non-abelian

theories [6, 7, 8].

Nonetheless, even in the aforementioned approximation, the calculations of even the first or-

ders in PT expansion of QCD matrix-elements at finite-Nc (Nc being the number of quark colours)

have proven delicate and radiative corrections of up to two gluons had been the sate-of-the-art for

quite a while. The chief reason for such a serious limitation in the QCD precision calculations

programme is two-fold:1

• The matrix-valued (non-commutative) colour space of QCD.

• The factorial growth of the number of Feynman diagrams at each escalating PT order.

A partial solution to the above hindrances that was employed since quite a while is that related

to the large-Nc limit [9, 10]. In this limit, the colour space effectively becomes scalar-valued and

the number of Feynman diagrams reduces substantially due to discarding non-planar diagrams

(suppressed by 1/N2
c). In fact, an analytical compact form for the emission of n soft energy-

ordered gluons at large-Nc was reported in [9, 10], and is generally implemented in Monte Carlo

parton showers (dipole cascade picture, e.g., [11]).

A full solution, whereby one restores the full colour structure and spans over all possible planar

and non-planar contributions, has not yet been properly addressed in the literature. It is the aim

1We are only discussing tree-level matrix-elements. Loop corrections can be straightforwardly treated in the eikonal

approximation, as shall be hinted at later.
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of this work to carry out this very task. Firstly, the problem of the non-abelian colour structure is

resolved via the aid of the ColorMath program developed by Sjödahl [12]. It is a Mathematica

package that performs colour-summed calculations in SU(Nc) for Nc ≥ 2. Secondly, the factorial

cascade gluon branching (in a dipole-like picture for energy-ordered gluons) is fully taken account

of via a Mathematica code that we have developed under the name of EikAmp. 2 The program

automatically computes the eikonal amplitude squared for all possible real and/or virtual gluon

configurations at finite Nc at (theoretically) any given order in PT. It relies solely on ColorMath

and the built-in For loop procedure.

The output of the program is however a lengthy cumbersome expression for which we provide,

in ref. [13], compact forms up to 4 loops (and partially at 5 loops). Finite-Nc corrections are found

to be absent at 3 loops and first appear at 4 loops. Noticeably at 4 loops the amplitude squared

exhibits some characteristics that were claimed to be absent by other authors [14]. Moreover,

finite-Nc corrections to the eikonal amplitude squared seem to have some peculiar properties (and

consequently the amplitude squared itself) that are absent for large-Nc contributions, and on which

we shall briefly shed some light in the last section.

In the next section we introduce the eikonal approximation as well as the main eikonal Feyn-

man rules that will prove essential to our later calculations. Moreover we present, in the same

section, the final form of the eikonal amplitude squared for the emission of n energy-ordered soft

gluons, and describe the skeleton of the EikAmp program. After that we discuss the main impor-

tant features of the all-orders form of the eikonal amplitude squared and finally summarise in the

last section.

2. Eikonal amplitudes

2.1 Eikonal approximation

Consider the simplest QCD process e+e− → qq̄ accompanied with the emission of a gluon g

with 4-momentum k, as illustrated in figure 1.

e−

q(pa)

e+

q̄(pb)

g(k)
(p a

+
k)

Figure 1: One of the Feynman diagrams contributing to the simple QCD process: e+e− → q+ q̄+ g.

The quark propagator reads:

Dq =
ı
(

p
µ
a γµ + kµγµ

)

(pa + k)2
, (2.1)

2The final version of the EikAmp package has not been finalised yet and will be presented in a future publication.
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where γµ are the usual Dirac matrices. The eikonal approximation corresponds to the situation

where the gluon k is soft. In other words, when the momentum k → 0 and thus pa ∼ pb. In this

case, the propagator above, eq. (2.1), simplifies to:

Deik
q =

ıp
µ
a γµ

2pa · k
, (2.2)

where on-mass-shell condition is assumed (p2
a = 0). Therefore one may deduce the following

eikonal Feynman rules for a (anti)quark propagator:

k

p

µ

+
pµ

p·k

k

p

µ

− pµ

p·k

Figure 2: Eikonal Feynman rules for (anti)quark propagators.

Analogous Eikonal rules (for the emission and absorption of a soft gluon) hold for gluon

propagators. Using the above rules one can build up the eikonal amplitude for any given process

and/or gluon configuration, as we shall demonstrate in the next subsection. An important feature

of eikonal amplitudes which is manifested even for the first emission is that they factorise into

a product of a Born amplitude times the sum of all possible emitting dipole-legs [14, 15]. This

factorisation property stands at the heart of the all-orders exponentiation of eikonal amplitudes

discussed in the introduction.

It is worth mentioning that in the eikonal approximation virtual corrections amount simply

to assigning a minus sign to the corresponding real emission squared amplitude, as is explicitly

shown in ref. [13]. This is of course true for the softest gluon, i.e., the amplitude squared for a

given configuration in which the softest gluon is virtual equals minus the squared amplitude for the

same configuration but with the softest gluon being real. The general form of the eikonal amplitude

squared for configurations in which an arbitrary number of virtual gluons are present is discussed

in what follows below. Due to the latter equality between real and virtual contributions –up to a

sign– we shall refer to PT orders as loop orders.

2.2 General formalism

The emission amplitude of a (real) soft gluon k by an ensemble of: a quark pa, an antiquark

pb and m energy-ordered harder gluons ki is given by [14, 16]:

M (pa, pb,k1, . . . ,km,k) = gs

[

pa · ε
∗c
a

pa · k
Tc

a +
pb · ε

∗c
b

pb · k
Tc

b +
m

∑
i=1

ki · ε
∗c
i

ki · k
Tc

i

]

M (pa, pb,k1, . . . ,km) ,

(2.3)

where Tc
i, i=a,b,1,...,m is the colour operator represented by +(−)tc

i (fundamental representation)

if the emitting parton i is an outgoing (incoming) quark or incoming (outgoing) antiquark, and

−(+)ı fc
i (adjoint representation) if the emitting parton is an outgoing (incoming) gluon [16]. The
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term ε∗c
i represents the polarisation vector of gluon ki where the superscript c is the colour index

and the subscript i labels the emitter. Recall that we are assuming energy-ordering for all final-state

gluons ω1 ≫ ω2 ≫ ··· ≫ ωm ≫ ω , with ωi and ω the energies of gluon ki and the softest gluon k

respectively.

Iterating the amplitude (2.3) down to the Born level, then evaluating the corresponding conju-

gate amplitude and multiplying out one obtains for the eikonal amplitude squared, of the emission

of m soft energy-ordered gluons in a given configuration X , the following factorised form [13]:

W X (pa, pb,k1, . . . ,km) = B(pa, pb)×W
X

12···m , (2.4a)

W
X

12···m = ᾱm
s C

i1···im
j1··· jm

[

m

∏
n=1

(

∑
in, jn∈Um−1

wn
in jn

)]

, (2.4b)

where B(pa, pb) is the Born amplitude squared, ᾱs = αs/π = (g2
s/4π)/π , Um = {a,b,1,2, · · · ,m}

is the set of all possible emitting dipole-legs of the softest gluon m, and the antenna function wℓ
i j is

defined by:

wℓ
i j = ω2

ℓ

(hi ·h j)

(hi ·hℓ)(h j ·hℓ)
, (2.5)

with ha = pa,hb = pb and hi = ki. The colour factor in the above amplitude squared reads:

C
i1···im
j1··· jm

=
1

Nc

tr
(

T
a1

i1
· · ·Tam

im
T

a1

j1
· · ·Tam

jm

)

, (2.6)

where “tr” means the trace. The colour factor (2.6) involves the term δqq̄ = tr (1) = Nc, which is

the colour factor associated with the Born amplitude squared. We have absorbed a factor Nc into

B(pa, pb) and divided it out in (2.6) so as to completely separate the two squared amplitudes. The

configuration X may be written as X= x1x2 · · ·xm, with each xi ∈ {R,V} where R stands for real

and V for virtual.

2.3 Implementation in Mathematica

The eikonal amplitude squared in eq. (2.4b) can be computed using the Mathematica pro-

gram “EikAmp” (see ref. [13]). The main algorithm of the latter is shown in Algorithm 1.

The output of the EikAmp program is a lengthy tedious expression involving products of

colour factors and antenna functions. We use the symmetries learned at 2 and 3 loops to write the

resultant expressions at 4 (and partially 5) loops in a closed compact form. The details are to be

found in ref. [13].

3. Results and discussion

Based on the results of the EikAmp program for 2, 3, 4 and 5 loops the following important

properties of the above eikonal amplitude squared, eq. (2.4b), may be deduced:

• It is totally symmetric under the interchange of the two hardest partons; quark and antiquark

(a ↔ b).

• It is totally symmetric under the interchange of the legs of the dipole emitting the softest

gluon.
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Algorithm 1 Compute eikonal amplitude squared at finite-Nc

1: Determine the loop order m

2: Begin with the bra amplitude:

3: for each emitted gluon ℓ do

4: Determine the set of all possible emitting dipole-legs

5: Pick up the first leg of each dipole (i)

6: Determine the corresponding colour matrix T
cℓ
i (fundamental or adjoint representation)

7: Move to the ket amplitude:

8: for each emitted gluon do

9: Determine the set of all possible emitting dipole-legs

10: Pick up the second leg of each dipole ( j)

11: Determine the corresponding conjugate colour matrix T
cℓ
j

12: end for

13: Call the CSimplify function of ColorMath

14: Decompose the output of CSimplify in terms of CF = (N2
c −1)/2Nc and CA = Nc

15: Multiply by the appropriate antenna wℓ
i j

16: end for

17: Sum up all contributions (all possible combinations of emitting dipoles)

• For the softest gluon, it is always true that

W
x1···R

12···m =−W
x1···V

12···m , (3.1)

regardless of the nature, R or V, of the rest of the harder gluons.

• The first finite-Nc corrections appear at 4 loops. Unlike large-Nc contributions, the former

corrections are not symmetric under permutations of gluons.

• It seems, contrary to the findings of ref. [14], that the 4 loops amplitude squared has no

singular dependence on angles and is fully integrable over the directions of all four gluons

involved (in ref. [17] we integrated it out for the hemisphere mass distribution and found a

finite answer).

• In addition to being non-symmetric under permutations of gluons, the eikonal amplitude

squared at 5 loops, and perhaps beyond, is not symmetric under the interchange of the legs

of each and every single emitting dipole. This symmetry breaking is primarily due to the

associated colour factor given in eq. (2.6).

• The source of the symmetry-breaking mentioned above is the finite-Nc corrections. Large-Nc

contributions are free of any such symmetry-breaking terms, as may easily be verified within

the EikAmp program.

• At large-Nc, the eikonal amplitude squared reduces to the simpler expression:

W
X

12···m = (ᾱs Nc)
m ∑

πm

(pa pb)

(pak1)(k1k2) · · · (km pb)
, (3.2)
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where πm represents all possible permutations of the set {pa, pb,k1, . . . ,km}. This result can

straightforwardly be found by setting CF → CA/2 in EikAmp at any given loop-order in PT.

4. Summary

We have been able to overcome the two hindrances that have long jeopardised progress in QCD

eikonal matrix-element calculations at finite-Nc beyond leading (2 loop) order. We have developed

a Mathematica program that performs such calculations in an automated fashion, and which

will be made public in the near future. Alternative versions of the program, written in c++ and/or

fortran, will also be considered. As a next step forward it seems natural to extend the present

work to the next-to-eikonal approximation. The latter guarantees the resummation of next-to-single

logs (of the form αn
s Ln−1), leading thus to more precise calculations.
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