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1. Introduction

Dijet production in hadronic collisions is one of the most simple process to study perturbative
QCD and hadron physics in high energy experiments,

A+B→ Jet1 + Jet2 +X , (1.1)

where A and B represent the two incoming hadrons with momenta P and P, respectively, the az-
imuthal angle between the two jets is defined as φ = φ1−φ2 with φ1,2 the azimuthal angles of the
two jets. Experiments at the Tevatron and LHC have studied this process extensively [1, 2, 3]. Most
of dijet events are produced in the back-to-back configuration in the transverse plane, i.e., φ ∼ π . In
particular, the leading order contributes to a Delta function at φ = π . Singular behavior will show
up at higher order corrections [4]. This divergence arises when the total transverse momentum of
dijet (imbalance) is much smaller than the individual jet momentum, q⊥ = |~P1⊥+~P2⊥| � |P1⊥| ∼
|P2⊥| ∼ PT , where large logarithms appear in every order of perturbative calculations. These large
logs are normally referred as the Sudakov logarithms, α i

s ln2i−1(P2
T/q2

⊥). Therefore, a QCD resum-
mation has to be included in order to have a reliable theoretical prediction, which is referred as the
transverse momentum dependent (TMD) resummation or the Collins-Soper-Sterman (CSS) resum-
mation [5]. In this talk, we will summarize recent theoretical developments in applying the CSS
technique in dijet production processes [6, 7, 8, 9, 10]. At the next-to-leading logarithmic (NLL)
order, the resummation formula can be summarized as [9, 10],

d4σ

dy1dy2dP2
T d2q⊥

= ∑
ab

σ0

[∫ d2~b⊥
(2π)2 e−i~q⊥·~b⊥Wab→cd(x1,x2,b⊥)+Yab→cd

]
, (1.2)

where y1 and y2 are rapidities of the two jets, PT is the leading jet transverse momentum, and q⊥
the imbalance transverse momentum between the two jets as defined above. All order resummation
for W from each partonic channel ab→ cd can be written as

Wab→cd (x1,x2,b) = x1 fa(x1,µ = b0/b⊥)x2 fb(x2,µ = b0/b⊥)e−SSud(Q2,b⊥)

× Tr
[

Hab→cdexp[−
∫ Q

b0/b⊥

dµ

µ
γ

s†]Sab→cdexp[−
∫ Q

b0/b⊥

dµ

µ
γ

s]

]
, (1.3)

where Q2 = ŝ= x1x2S, which represents the hard momentum scale, b0 = 2e−γE , fa,b(x,µ) are parton
distributions for the incoming partons a and b, x1,2 = PT (e±y1 + e±y2)/

√
S are momentum fractions

of the incoming hadrons carried by the partons. In the above equation, the hard and soft factors
H and S are expressed as matrices in the color space of partonic channel ab→ cd, and γs are the
associated anomalous dimensions for the soft factor. The Sudakov form factor SSud resums the
leading double logarithms and the universal sub-leading logarithms,

SSud(Q2,b⊥) =
∫ Q2

b2
0/b2
⊥

dµ2

µ2

[
A ln

(
Q2

µ2

)
+B+D1 ln

Q2

P2
T R2

1
+D2 ln

Q2

P2
T R2

2

]
, (1.4)

where R1,2 represent the cone sizes for the two jets. Here the parameters A, B, D1, D2 can be
expanded perturbatively in αs. At one-loop order, A =CA

αs
π

, B =−2CAβ0
αs
π

for gluon-gluon initial
state, A =CF

αs
π

, B = −3CF
2

αs
π

for quark-quark initial state, and A = (CF+CA)
2

αs
π

, B = (−3CF
4 −CAβ0)

αs
π

for gluon-quark initial state, D coefficient represents the final state jet contribution with D =CA
αs
2π

for gluon jet and D =CF
αs
2π

for quark jet.
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2. Calculations at One-loop Order

It is illustrative to have a one-loop calculation to show the main feature of high order perturba-
tive corrections, and demonstrate the associated factorization for this process. One-loop corrections
come from four contributions: (a) virtual contributions; (b) soft gluon radiation (real); (c) jet contri-
butions; (d) collinear gluon radiation associated with the incoming parton distributions. The virtual
graphs have been studied in the literature [11]. The jet contributions are easy to derive following the
examples of inclusive jet production, where we adopt the narrow jet approximation (NJA) [12, 13].
Collinear gluon radiation associated with incoming parton distributions also contribute to the fi-
nite imbalance transverse momentum. This part can be formulated according to the well-known
DGLAP splitting. In Figs. 1 and 2, we show schematic diagrams for these contributions.

(a) (b) (c)

Figure 1: Schematic diagrams for virtual graph contribution (a) and final state jet contributions (b) and (c)
at one-loop order. Both of them are proportional to a Delta function of the imbalance transverse momentum:
δ (2)(q⊥).

As an example, let us show the result for the quark-quark scattering channel, qq′ → qq′, for
which we have the following one-loop result for the dominant contributions in terms of large loga-
rithms of ln(Q2b2

⊥/b2
0) and ln(µ2b2

⊥/b2
0),

W (1)(b⊥)|logs. =
αs

2π

{
h(0)qiq j→qiq j

[
− ln

(
µ2b2

⊥
b2

0

)(
Pqq(ξ )δ (1−ξ

′)+Pqq(ξ
′)δ (1−ξ )

)
−δ (1−ξ )

×δ (1−ξ
′)

(
CF ln2

(
Q2b2

⊥
b2

0

)
+ ln

(
Q2b2

⊥
b2

0

)(
−3CF +CF ln

1
R2

1
+CF ln

1
R2

2

))]
−δ (1−ξ )δ (1−ξ

′) ln
(

Q2b2
⊥

b2
0

)
Γ
(qq′)
sn

}
, (2.1)

where h(0) is the leading order expression for this partonic channel, Pq/q the quark-quark splitting
kernel, and Γsn represents the process-dependent the sub-leading logarithmic term. A number of
interesting features can be observed, which all support the associated QCD factorization and re-
summation. The large logarithms appear in the one-loop calculations contain three terms: (a) the

(a) (b)

Figure 2: Schematic diagrams for real gluon radiation contribution to finite imbalance transverse momen-
tum: (a) collinear gluon radiation associated with the incoming partons; (b) soft gluon radiation outside the
jet cone of final state jets.
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double logarithms in terms of ln2(Q2b2
⊥/b2

0) proportional to incoming partons color factors (here, it
is CF +CF ); (b) single logarithms in terms of ln(µ2b2

⊥/b2
0) associated with parton distributions; (c)

the left single logarithms of ln(Q2b2
⊥/b2

0) contains similar terms as Drell-Yan process (the −3CF

term) and those associated with dijet production in this particular channel (jet size dependent con-
tributions and additional contributions which is process-dependent).

Another important cross check is to compare to the fixed order calculations in the correlation
limit, i.e., q⊥� PT . To do that, we add the soft gluon (real) and collinear gluon (real) contributions
together, which leads to the so-called asymptotic behavior for the differential cross sections at low
imbalance transverse momentum q⊥. This was compared to the fixed order calculations, and it was
found that the asymptotic results agree well with the fixed order perturbative calculations in the
correlation limit. This demonstrates that the most important contributions from the collinear and
soft gluon radiation have been computed in the one-loop calculations [9, 10].

3. TMD Factorization and Resummation

To derive the QCD resummation formalism in dijet production process, we argue that a TMD
factorization can be applied, where the differential cross section can be factorized into the TMD
parton distributions, soft and hard factors. The final resummation was achieved by solving the
relevant evolution equation for the TMDs and the soft factor. We adopt the Ji-Ma-Yuan scheme for
the TMD parton distributions [14],

xg(x,k⊥) =
∫ dξ−d2ξ⊥

P+(2π)3 e−ixP+ξ−+i~k⊥·~ξ⊥
〈

P|F+
a µ

(ξ−,ξ⊥)L
†

vab(ξ
−,ξ⊥)Lvbc(0,0⊥)Fµ+

c (0)|P
〉
,

for the TMD gluon distribution, where Fµν is the gauge field strength tensor, and

Lv(ξ ) = Pexp
(
−ig

∫ −∞

0
dλv ·A(λv+ξ )

)
is the gauge link in the adjoint representation, Aµ = −i fabcAµ

c . The off-light-cone vector v is
introduced to regulate the light-cone singularity associated with the TMD distributions, ζ 2 = (2v ·
P)2/v2. An evolution equation can be derived for the TMD distributions respect to ζ ,

∂

∂ lnζ
xg(x,b⊥,ζ ) = (K(µ,b⊥)+G(ζ ,µ))× xg(x,b⊥,ζ ) , (3.1)

where K and G are the evolution kernel. Similarly, we will introduce the TMD parton distribution
from incoming hadron B, which includes another light-cone singularity regulator ζ̄ 2 = (2v̄ · P̄)2/v̄2.
After resummation, the dependence on v and v̄ will cancel out between TMD distributions and the
soft factors.

In the dijet production process, there is an additional soft factor contribution in the TMD
factorization, which depends on the color configuration of the partonic scattering channels. The
first calculation to take into account the soft gluon contribution for dijet production was considered
in Ref. [15, 16] in the context of the threshold resummation, where the soft gluon radiations are
evaluated on the orthogonal color basis. We follow this procedure to formulate the soft factor in
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Figure 3: Resummation results on dijet azimuthal correlations at the Tevatron, compared to the experimental
data from D0 Collaboration [1], where both jets are produced in central-rapidity region with |y| < 0.5.
Away from φ = π , the resummation results (solid curves) are matched to a full NLO calculation (dashed
curves) [1, 4].

the same color bases for all partonic channels. After computing the one-loop diagrams of the soft
factor, we find that the soft factor satisfies the renormalization group equation [15]:

d
d ln µ

SIJ(µ) = −Γ
s†
IJ′SJ′J(µ)−SIJ′(µ)Γ

s
J′J , (3.2)

where Γ is the relevant anomalous dimension. By solving the renormalization group equation, we
resum the large logarithms associated with the soft factor.

Factorization implies that the differential cross section contributions from the partonic pro-
cesses can be written as

Wab→cd (xi,b) = x1 fa(x1,b,ζ 2,µ2,ρ)x2 fb(x2,b, ζ̄ 2,µ2,ρ)Tr
[
Hab→cd(Q2,µ2,ρ)Sab→cd(b,µ2,ρ)

]
,

where the dependence on ρ =(2v · v̄)2/v2v̄2 and the factorization scale µ cancel out among different
factors. To derive the final resummation results, we have to solve the evolution equation for the
parton distributions and the renormalization group equation for the soft factor. In particular, the
factorization scale is chosen around µ = Q, and evolve the parton distribution and soft factor from
the scale 1/b to Q.

4. Compare to the Experimental Data

With resummation formula derived, we can compare to the experimental data. In Fig. 3, the
Tevatron data from D0 Collaboration was shown. In the numeric calculations, the perturbative coef-
ficients A(1,2), B(1) and D(1)

1,2 are considered in the Sudakov form factor. When Fourier transforming
the b⊥-expression to obtain the transverse momentum distribution, we follow the b∗ prescription
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Figure 4: The comparisons between the resummation results and the experimental data from the CMS (left)
and ATALAS collaborations at the LHC.

of CSS resummation [5], i.e., replacing b⊥ by b∗ = b/
√

1+b2/b2
max in the calculation. By doing

so, we will also introduce the non-perturbative form factors for the quarks and gluons from the
initial states. In our calculations, we have used bmax = 0.5GeV−1, and the non-perturbative form
factors follow the parameterizations in Refs. [17]. However, it was found that the final results are
not sensitive to the non-perturbative form factors at all.

From Fig. 3, we see that the resummation results agree well with the experimental data, from
φ near to π down to much smaller values. For smaller value of φ (away from the back-to-back
configuration), the resummation calculations match to the fixed order results at NLO [4], which
has also been separately shown in Fig. 3. We note that a full NLO calculation cannot describe
experimental data for φ ∼ π [1], where the fixed order calculation becomes divergent. Our resum-
mation calculation, after being matched with the NLO result clearly improves the theory prediction
and can describe the experimental data in a wider kinematic region.

In Fig. 4, we compare our resummation results with the experimental data from the LHC.
Similar to the D0 measurements, the dijet measurements from CMS are presented in several kine-
matic bins, with the leading jet transverse momentum labelled by Pmax

T in the figure. The second jet
transverse momentum is chosen to be larger than 30 GeV. Both jets are in the mid-rapidity region,
|y jet |< 1.1. Anti-kt jet algorithm with jet size R = 0.5 was used in the data analysis. In this figure,
we limit the comparisons in the back-to-back correlation region, where we find perfect agreements
between the resummation calculations and the experimental data over all transverse momentum
bins. In ATLAS measurements [3], the same anti-kt algorithm has been used, however, with jet
size R = 0.6. The two jets are selected from the mid-rapidity region (|y jet | < 0.8) with minimum
transverse momentum of 100 GeV. Again, we find that the agreements between the resummation
results and the experimental data are very well around the back-to-back correlation regions, except
in the lowest Pmax

T bin. The apparent poor agreement between the resummation prediction and the
ATLAS data in the lowest Pmax

T bin (between 110 GeV and 160 GeV) is caused by the stronger
kinematic cut made on the second jet PT , which is required to be above 100 GeV at ATLAS and
30 GeV at CMS. With a much tighter cut on this second jet PT , the phase space for multiple soft

6
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gluon emission is limited so that our resummation calculation (which allows all possible soft gluon
radiation) becomes less reliable in this case. We note that in the lowest Pmax

T bin, the cross section
is dominated by Pmax

T around 110 GeV which is close to the 100 GeV cut on the second jet made
by the ATLAS.

5. Conclusions

In this talk, we have summarized recent progress in QCD resummation calculation for dijet az-
imuthal angular correlation in hadron collisions. It was found that the perturbative expansion of the
resummation calculation agree well with the fixed order calculation in the back-to-back correlation
limit (φ around π). The resummation results can describe a much wider range of the experimental
data, particulary for φ around π where event rate dominates. The agreements between the resum-
mation results and the experimental data encourage further developments along this direction.
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