

N³LO approximate results for top-quark differential cross sections and forward-backward asymmetry

Nikolaos Kidonakis**

Department of Physics, Kennesaw State University, Kennesaw, GA 30144, USA E-mail: nkidonak@kennesaw.edu

I present a calculation of approximate N³LO corrections from NNLL soft-gluon resummation for differential distributions in top-antitop pair production in hadronic collisions. Soft-gluon corrections are the dominant contribution to top-quark production and closely approximate exact results through NNLO. I show aN³LO results for the total $t\bar{t}$ cross section, the top-quark p_T and rapidity distributions, and the top-quark forward-backward asymmetry. The higher-order corrections are significant and they reduce theoretical uncertainties.

XXIII International Workshop on Deep-Inelastic Scattering 27 April - May 1 2015 Dallas, Texas

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

[†]This material is based upon work supported by the National Science Foundation under Grant No. PHY 1212472.

Figure 1: Total aN³LO cross sections for $t\bar{t}$ production at the LHC (left) and the Tevatron (right) and comparison with LHC [7,8] and Tevatron [9] data.

1. Introduction

The calculation of higher-order corrections for $t\bar{t}$ total cross sections, top-quark transverse momentum (p_T) and rapidity distributions, and the top forward-backward asymmetry (A_{FB}) is an important part of top-quark physics. QCD corrections are very significant for top-antitop pair production. Soft-gluon corrections, calculated appropriately, are the dominant part of these corrections at LHC and Tevatron energies. The soft corrections are currently known through N³LO [1–3].

The soft-gluon terms in the *n*th-order perturbative corrections involve $[\ln^k(s_4/m_t^2)]/s_4$ with $k \le 2n-1$ and s_4 the kinematical distance from partonic threshold. We resum these soft corrections at NNLL accuracy via factorization and renormalization-group evolution of soft-gluon functions [4]. The calculation is for the double-differential cross section using the standard moment-space resummation in perturbative QCD. The first N³LO expansion was given in [5] with a complete formal expression given in [6]. Approximate N³LO (aN³LO) total and differential cross sections from the expansion of the NNLL resummed expressions have been obtained most recently in [1, 2]. The latest aN³LO results for the total cross section [1], top p_T and rapidity distributions [2], and the top forward-backward asymmetry A_{FB} [3], provide the best and state-of-the-art theoretical predictions.

It has been known for some time that the partonic threshold approximation in our formalism works very well for LHC and Tevatron energies; the differences between approximate and exact cross sections at both NLO and NNLO are at the per mille level. This is also true for p_T and rapidity distributions and A_{FB} . The use of a fixed-order expansion removes the need for a prescription to deal with divergences and the unphysical effects of such prescriptions. The stability and robustness of the theoretical higher-order results in our resummation approach over the past two decades as well as the correct prediction of the size of the exact NNLO corrections validate our formalism.

2. Top-antitop pair total cross sections at the LHC and the Tevatron

In Fig. 1 we show the aN³LO total $t\bar{t}$ cross sections at LHC and Tevatron energies [1] and

Figure 2: Normalized aN³LO top-quark p_T distributions at the 7 TeV LHC, and comparison with CMS data [11] in the dilepton (black) and lepton+jets (red) channels (left plot), and with ATLAS data [12] in the lepton+jets channel (right plot).

compare them with LHC combination data from the ATLAS and CMS collaborations at 7 TeV [7] and 8 TeV [8] energies, and Tevatron combination data from the CDF and D0 collaborations at 1.96 TeV energy [9]. We use MSTW2008 NNLO pdf [10] for all our predictions. The agreement of theoretical predictions with experimental data is excellent.

We also provide the aN³LO total $t\bar{t}$ cross sections with $m_t = 173.3$ GeV below. At the Tevatron with 1.96 TeV energy the cross section is $7.37^{+0.09+0.38}_{-0.27-0.28}$ pb; at the 7 TeV LHC it is 174^{+5+9}_{-7-10} pb; at the 8 TeV LHC it is 248^{+7+12}_{-8-13} pb; at the 13 TeV LHC it is 810^{+24+30}_{-16-32} pb; and at the 14 TeV LHC it is 957^{+28+34}_{-19-36} pb. The first uncertainty in the previous numbers is from scale variation over $m_t/2 \le \mu \le 2m_t$ and the second is from the MSTW2008 pdf [10] at 90% C.L.

Fractional contributions to the perturbative series for the $t\bar{t}$ cross section at the LHC converge well through N³LO, which could potentially indicate that corrections beyond N³LO are negligible [1]. For Tevatron energies the convergence is slower [1].

3. Top-quark p_T and rapidity distributions at the LHC and the Tevatron

In Fig. 2 we show the normalized aN³LO top-quark p_T distribution, $(1/\sigma)d\sigma/dp_T$, at 7 TeV LHC energy and compare with results from CMS in the dilepton and lepton+jets channels [11] and from ATLAS in the lepton+jets channel [12]. We find excellent agreement between the theoretical results and the 7 TeV LHC data. The theoretical predictions are also in excellent agreement with recent CMS top p_T data at 8 TeV in both channels [13].

In the left plot of Fig. 3 we show the aN³LO top-quark p_T distributions [2], $d\sigma/dp_T$, at 13 and 14 TeV LHC energies. In the right plot of Fig. 3 we show the aN³LO top-quark p_T distributions [2] at 1.96 TeV Tevatron energy and compare with D0 data [14], finding very good agreement.

We continue with the top-quark rapidity distribution at the LHC [2]. In the left plot of Fig. 4 we show the normalized aN³LO top-quark rapidity distribution, $(1/\sigma)d\sigma/dY$, at 7 TeV LHC energy and compare with results from CMS in the dilepton and lepton+jets channels [11], finding excellent agreement between theory and data. The theoretical predictions at 8 TeV are also in

Figure 3: Top-quark aN³LO p_T distributions at the LHC (left) and at the Tevatron compared to D0 data [14] (right).

Figure 4: (Left) Top-quark aN³LO normalized rapidity distributions at the 7 TeV LHC and comparison with CMS data [11] in the dilepton (black) and lepton+jets (red) channels; (Right) Top-quark aN³LO rapidity distributions at 13 and 14 TeV LHC energies.

excellent agreement with recent CMS top rapidity data in both channels [13]. We also show the aN³LO top-quark rapidity distributions, $d\sigma/dY$, at 13 and 14 TeV LHC energies in the right plot of Fig. 4.

In the left plot of Fig. 5 we compare the aN³LO distribution of the absolute value of the top-quark rapidity, $d\sigma/d|Y|$, at the Tevatron with D0 data [14] and find very good agreement.

4. Top-quark forward-backward asymmetry at the Tevatron

Finally, we discuss the top forward-backward asymmetry at the Tevatron

$$A_{\rm FB} = \frac{\sigma(y_t > 0) - \sigma(y_t < 0)}{\sigma(y_t > 0) + \sigma(y_t < 0)}.$$
(4.1)

Figure 5: (Left) Top-quark aN³LO $d\sigma/d|Y|$ distribution at the Tevatron compared with D0 data [14]; (Right) Top-quark aN³LO differential A_{FB} at the Tevatron compared with CDF [16] and D0 [17] data.

The above expression can be evaluated with numerator and denominator separately at fixed-order or it can be re-expanded in α_s (see [3] for details through aN³LO). As was discussed in [3] the soft-gluon corrections are dominant and in our formalism they precisely predicted [15] the exact asymmetry at NNLO. The high-order perturbative corrections are large: the aN³LO/NNLO ratio is 1.08 without re-expansion in α_s , or 1.05 with re-expansion in α_s . Including electroweak corrections and the aN³LO QCD corrections we find an asymmetry of $(10.0 \pm 0.6)\%$ in the $t\bar{t}$ frame using reexpansion in α_s .

The differential top forward-backward asymmetry is defined by

$$A_{\rm FB}^{\rm bin} = \frac{\sigma_{\rm bin}^+(\Delta y) - \sigma_{\rm bin}^-(\Delta y)}{\sigma_{\rm bin}^+(\Delta y) + \sigma_{\rm bin}^-(\Delta y)} \quad \text{with} \quad \Delta y = y_t - y_{\bar{t}}.$$

In the right plot of Fig. 5 we plot the differential A_{FB} and compare with recent results from CDF [16] and D0 [17]. The agreement between theory and experiment is very good for both the total and the differential asymmetries.

5. Summary

The N³LO soft-gluon corrections for top-antitop pair production are significant and provide the best available theoretical predictions. Results have been presented for the total $t\bar{t}$ cross sections, the top-quark p_T and rapidity distributions, and the top-quark forward-backward asymmetry. The corrections are large at LHC and Tevatron energies and they reduce the theoretical uncertainties from scale variation. There is excellent agreement between aN³LO theoretical predictions and LHC and Tevatron data.

References

 N. Kidonakis, NNNLO soft-gluon corrections for the top-antitop pair production cross section, Phys. Rev. D 90, 014006 (2014) [arXiv:1405.7046 [hep-ph]].

- Nikolaos Kidonakis
- [2] N. Kidonakis, NNNLO soft-gluon corrections for the top-quark p_T and rapidity distributions, Phys. Rev. D 91, 031501(R) (2015) [arXiv:1411.2633 [hep-ph]].
- [3] N. Kidonakis, *The top quark forward-backward asymmetry at approximate N³LO*, *Phys. Rev. D* 91, 071502(R) (2015) [arXiv:1501.01581 [hep-ph]].
- [4] N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82, 114030 (2010) [arXiv:1009.4935 [hep-ph]].
- [5] N. Kidonakis, *High-order corrections and subleading logarithms for top quark production*, *Phys. Rev. D* 64, 014009 (2001) [hep-ph/0010002].
- [6] N. Kidonakis, Next-to-next-to-next-to-leading-order soft-gluon corrections in hard-scattering processes near threshold, Phys. Rev. D 73, 034001 (2006) [hep-ph/0509079].
- [7] ATLAS and CMS Collaborations, *Combination of ATLAS and CMS top-quark pair cross-section measurements using proton-proton collisions at* $\sqrt{s} = 7$ *TeV*, ATLAS-CONF-2012-134, CMS PAS TOP-12-003.
- [8] ATLAS and CMS Collaborations, *Combination of ATLAS and CMS top quark pair cross section measurements in the eµ final state using proton-proton collisions at* $\sqrt{s} = 8$ TeV, ATLAS-CONF-2014-054, CMS PAS TOP-14-016.
- [9] CDF and D0 collaborations, *Combination of measurements of the top-quark pair production cross section from the Tevatron Collider*, *Phys. Rev. D* **89**, 072001 (2014) [arXiv:1309.7570[hep-ex]].
- [10] A.D. Martin, W.J. Stirling, R.S. Thorne, and G. Watt, *Parton distributions for the LHC, Eur. Phys. J.* C 63, 189 (2009) [arXiv:0901.0002 [hep-ph]].
- [11] CMS Collaboration, Measurement of differential top-quark pair production cross sections in pp colisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C 73, 2339 (2013) [arXiv:1211.2220 [hep-ex]].
- [12] ATLAS Collaboration, Measurements of normalized differential cross sections for $t\bar{t}$ production in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector, Phys. Rev. D **90**, 072004 (2014) [arXiv:1407.0371 [hep-ex]].
- [13] CMS Collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at $\sqrt{s} = 8$ TeV, arXiv:1505.04480 [hep-ex].
- [14] D0 Collaboration, Measurement of differential tī production cross sections in pp̄ collisions, Phys. Rev. D 90, 092006 (2014) [arXiv:1401.5785 [hep-ex]].
- [15] N. Kidonakis, The top quark rapidity distribution and forward-backward asymmetry, Phys. Rev. D 84, 011504(R) (2011) [arXiv:1105.5167 [hep-ph]].
- [16] CDF Collaboration, Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev. D 87, 092002 (2013) [arXiv:1211.1003 [hep-ex]].
- [17] D0 Collaboration, Measurement of the forward-backward asymmetry in top quark-antiquark production in pp̄ collisions using the lepton+jets channel, Phys. Rev. D 90, 072011 (2014) [arXiv:1405.0421 [hep-ex]].