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In using transverse-momentum-dependent (TMD) parton densities and fragmentation functions,
important non-perturbative information is at large transverse position bT . This concerns both the
TMD functions and their evolution. Fits to high energy data tend to predict too rapid evolution
when extrapolated to low energies where larger values of bT dominate. I summarize a new anal-
ysis of the issues. It results in a proposal for much weaker bT dependence at large bT for the
evolution kernel, while preserving the accuracy of the existing fits. The results are particularly
important for using transverse-spin-dependent functions like the Sivers function.
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TMD factorization and evolution at large bT John COLLINS

1. Introduction

This talk summarized some recent work [1] in collaboration with Ted Rogers.
The overall motivation is to understand the evolution of transverse-momentum-dependent

(TMD) parton densities (etc) especially at the relatively low values of Q that have considerable
current interest, as can be seen from many talks in this session on spin physics. We are particularly
concerned with the non-perturbative part of the evolution, since there appear to be inconsistencies
between the evolution found in fits [2, 3] to higher Q Drell-Yan data, and the slower evolution pre-
ferred (e.g., [4, 5]) by more recent data at lower Q. When TMD functions are Fourier transformed
into a space of transverse coordinates bT, non-perturbative contributions are at large bT.

Our aim was to to try to preserve good fits to the Drell-Yan data, while also agreeing with the
lower energy data and satisfying non-perturbative constraints from the theory side.

2. Review of TMD factorization and the organization of non-perturbative
information

We use the following TMD factorization formula for the Drell-Yan cross section differential
in the lepton pair momentum qµ and lepton angle:

dσ

d4qdΩ
=

2
s ∑

j

dσ̂ j̄(Q,µ 7→ Q)

dΩ

∫
eiqT·bT f̃ j/A(xA,bT;Q2,Q) f̃̄/B(xB,bT;Q2,Q)d2bT, (2.1)

valid when qT � Q and polarization effects are ignored. The functions f̃ (x,bT,Q2,Q) are the
Fourier transformed parton densities (pdfs) to bT, with the CSS ζ and µ parameters set to Q2 and
Q. The perturbative hard scattering factor is dσ̂(Q,µ 7→ Q). The TMD pdfs obey an evolution
equation of the form

d ln f̃ f/H(x,bT;Q2;Q)

d lnQ
= γ(αs(Q))+K̃(bT;Q)= γ(αs(Q))−

∫ Q

µb

dµ

µ
γK(αs(µ))+K̃(bT; µb). (2.2)

The strongly universal function K̃(bT; µ) controls evolution of the shape of the TMD functions,
and its behavior at large bT is the primary concern of our work. In the right-most part of (2.2), a
renormalization-group transformation to scale µb∗ ∝ 1/b∗ was applied to remove large logarithms.

Non-perturbative information is (a) in the values of the TMD pdfs and of K̃ at large bT, and
(b) from ordinary pdfs that appear in the OPE that gives the TMD pdfs at small bT.

To separate non-perturbative contributions to evolution, we use the CSS method to write:

d ln f̃ f/H(x,bT;Q2;Q)

d lnQ
= γ(αs(Q))−

∫ Q

µb∗

dµ

µ
γK(αs(µ))+ K̃(b∗; µb∗)−gK(bT;bmax), (2.3)

where a smooth cutoff on the perturbative part is provided by b∗ = bT/
√

1+b2
T/b2

max. Perturba-
tive calculations give the first three terms on the right of (2.3), while fits to data are made for a
parameterized form for gK(bT;bmax), which includes the non-perturbative large bT contributions.

The predictive power of this TMD factorization formalism beyond the calculable perturbative
contributions is from two sources. First is the universality of pdfs between reactions. Second is the
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strong universality of K̃, i.e., its lack of dependence on the reaction, on the hadron and quark flavor,
and on spin and x. The Q dependence of K̃ is governed by the perturbative function γK , leaving
non-perturbative dependence as a function of bT only.

Common choices of bmax are 0.5GeV−1 and 1.5GeV−1. Observe that if bmax is chosen to be
too conservatively small, then fitting of gK to data includes reproducing the full K̃(bT) in a region
of bT that is still accessible to perturbative calculations.

3. Geography of evolution
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Figure 1: Left, top: cross-section for Q from 7GeV−1 to 18GeV−1 in the E605 experiment compared with
fits by Landry et al. (BLNY), adapted from [2]. Left, bottom: corresponding bT integrand at Q = 11GeV−1

for fits by Konychev and Nadolsky (KN) [3]. Right: similar plots for Z production at the Tevatron; note that
the cross section is for dσ /dqT instead of dσ /d2qT, which gives a kinematic zero at qT = 0.

As illustrated in Fig. 1, evolution to higher Q shifts the dominant region of bT to ever lower
values. Therefore the differential cross section as a function of qT broadens as Q increases. The in-
creasing suppression of the large bT region implies that the cross section is eventually dominated by
perturbative effects, even at qT = 0, provided that the large distance properties are non-pathological.
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4. Results for K̃ from fits

The evolution of the integrand W̃ in Eq. (2.1) is given by

d lnW̃
d lnQ2 = G(αs(Q))−

∫ Q

µb∗

dµ

µ
γK(αs(µ))+ K̃(b∗; µb∗)−gK(bT;bmax), (4.1)

where G(αs(Q)) is perturbatively calculable. The right-hand side is the sum of a Q-dependent
term and a bT-dependent term. The Q-dependent term affects only the normalization of the cross
section.

The change in shape of the cross section is governed only by the bT-dependent part, which can
be considered as the value of K̃(bT; µ1) at some fixed reference scale µ1:

K̃(bT; µ1) =−
∫

µ1

µb∗

dµ

µ
γK(αs(µ))+ K̃(b∗; µb∗)−gK(bT;bmax). (4.2)

Therefore we can gain an understanding of the change of shape of the qT-dependent cross section
with Q from the functional dependence of K̃(bT; µ1) on bT.

Typical bT: 0.5GeV−1 1.2GeV−1 3GeV−1

Q: mZ 10GeV 2GeV

Figure 2: K̃ and its components from the KN and BLNY fits. See the text for details.

In Fig. 2 is shown the bT dependence of K̃(bT;2GeV−1) in the KN and BLNY fits. Overall,
we see a decreasing function, which corresponds to the shift to smaller dominant values of bT with
increasing Q that we saw in Fig. 1.

The red curve gives the purely perturbative, renormalization-group-improved prediction for K̃.
This is obtained by setting bmax = ∞ and gK = 0 on the right-hand side of (4.2). The calculation
shown was made with 2-loop approximations for the evolution of the running coupling and for γK .
This prediction is valid when bT is small enough, but then diverges to −∞ from the Landau pole in
the approximated coupling, where perturbative-based calculations are completely untrustworthy.

CSS’s b∗-prescription gives a smooth cut off of the perturbative term, intended to restrict it
to a region where perturbatively based calculations are valid. The cut-off part of K̃, i.e., the first
two terms on the right of (4.2) is shown as the dotted curves in Fig. 2. The blue curve is for
bmax = 0.5GeV−1, corresponding to the BLNY fit of [2]. The black curve is for bmax = 1.5GeV−1,
corresponding to the KN fit [3], which gives a better fit to the Drell-Yan data.

Finally we include the fitted functions gK for the two fits giving the black and blue solid curves.
In both cases gK is purely quadratic: gK ∝ b2

T. We first notice that each of these two curves matches
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the purely perturbative red curve beyond where the bmax cut off is important. Indeed the KN curve
gives a good match to above 2GeV−1 = 0.4fm, which is, a priori, a region of at best marginal
applicability of perturbative methods. That the fits match a perturbative calculation suggests that
the primary result of fitting the one parameter in each fit is to reproduce perturbation theory and
then to extrapolate the result to large bT in a non-singular fashion.

At large bT, there is a dramatic difference between the KN and BLNY curves. This is reflected
in the factor of two difference between the corresponding integrands at the right-hand edge of the
lower right plot in Fig. 1. But that large fractional difference is in a place where the integrands are
small, and so has little effect on the quality of the fits.

To understand where the differences between the curves matter, we need to know the typical
values of bT involved. These are given below the graph in Fig. 2, and we deduce that the fits were
primarily sensitive to bT below about 2GeV−1. The values at larger bT are only an extrapolation,
which need not be correct. To probe larger values of bT experimentally, we need lower Q.

That the extrapolation is actually wrong is indicated phenomenologically by the results of Sun
and Yuan [4]. At large-bT, the fitted Gaussian for the TMD pdfs combined with evolution governed
by a quadratic gK gives a Q-dependent Gaussian behavior for the integrand W̃ :

W̃ ∼ . . .e−b2
T[coeff(x)+const ln(Q2/Q2

0)] = . . .e−b2
Ta(Q,x) (at large bT). (4.3)

At a value of Q appropriate for data from HERMES and CLAS, the value of a(Q,x) in this equation
becomes negative when the BLNY fit is used; this gives a completely unphysical cross section. The
KN fit (with bmax = 1.5GeV−1 = 0.3fm) merely gives a value of a(Q,x) much too low to agree
with the data.

5. Improved large-bT properties

Phenomenologically, we have good standard fits to Drell-Yan data that determine K̃ for bT

up to around 1.5GeV−1 = 0.3fm, but not much further. At lower Q, larger bT dominates, but
the extrapolated evolution appears to be too strong to agree with data. Furthermore, from the
theoretical side the Gaussian large-bT behavior of TMD functions is disfavored [6]. Instead, the
expected behavior of Euclidean correlation functions is an exponential times a power:

1
bp

T
e−mbT . (5.1)

That is a non-perturbative statement, with m being the mass of a relevant state. (One could, of
course, ask whether this expectation is really correct in a confining theory like QCD)

Supposing that the mass in the exponent is energy-independent suggests that K̃(bT) goes to
a constant as bT → ∞. The constant gives a Q-dependent change (presumably a decrease) to the
normalization of TMD pdfs at large bT, but does not affect the exponential itself.

We therefore proposed [1] a new parameterization for gK :

gK(bT;bmax) = g0(bmax)

(
1− exp

[
− CFαs(µb∗)b

2
T

πg0(bmax)b2
max

])
, (5.2)
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where

g0(bmax) = g0(bmax,0)+
2CF

π

∫ C1/bmax

C1/bmax,0

dµ ′

µ ′
αs(µ

′) (5.3)

is the value of gK at bT = ∞. This is arranged to have the following properties:

• At moderate bT it is approximately quadratic, and the sum of gK and the cut-off K̃(b∗; µb∗)

approximately agrees with perturbation theory.

• At large bT, it goes to a constant.

• The constant is given bmax dependence to compensate (to leading order), the bmax dependence
of the perturbative term: limbT→∞ K̃(b∗; µb∗) = K̃(bmax; µbmax).

• Only one free parameter is used.

As we well see, the result gives much reduced bmax dependence of evolution compared with
standard parameterizations. The exact K̃ is a quantity in full QCD and therefore does not itself have
any bmax dependence whatsoever. If a simple quadratic function is used and happens to be correct
for gK at one value of bmax, it cannot be valid for other values of bmax; a different functional form
is needed.

Of course, we do not imagine that our proposed formula (5.2) is exactly correct; we simply
propose it as a starting guess from which further refinement is possible.
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Figure 3: Results of new parameterization for K̃.

We have not yet used our new parameterization to perform comparisons or fits with data. To
show that it is likely to give reasonable results, we show in Fig. 3 what it gives for K̃ for two values
of bmax, with the choice that g0 = 0.3 when bmax = 1.5GeV−1. It gives reasonable agreement with
the KN results in the region of bT where the KN fit was determined by Drell-Yan data. But the
flattening of the curves at larger bT shows that the evolution of the shape of the distribution is
slower at large Q, as is necessary to be compatible with data at lower energy.
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Figure 4: W̃ with new parameterization, compared with KN version.

Finally, to measure the compatibility with the Drell-Yan data, Fig. 4 shows some results (from
Nadolsky, Rogers and Wang) for the Fourier transform in (2.1), at Q = 20GeV, in comparison with
the KN results for two values of bmax.

6. Summary of results

We argue that K̃ goes to a constant at large bT. This value should be measured, of course.
We propose a new parameterization to interpolate between the constant at large bT and the known
behavior at moderate bT. It should give better agreement with data and general principles over a
wide range of Q. Further refinement is possible, of course.

To facilitate comparison between different work, fits should be presented in terms of the full
K̃(bT), not just in terms of gK .

In [1], we argued that the following function can give useful diagnostics:

A(bT) =−
∂

∂ lnb2
T

∂

∂ lnQ2 lnW̃ (bT,Q,xA,xB)
CSS
= − ∂

∂ lnb2
T

K̃(bT,µ). (6.1)

It controls evolution of shape of TMD functions, is scheme and scale independent, and is strongly
universal.
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