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We present our recent results on the study of the Semi-Inclusive Deep Inelastic Scattering (SIDIS)
cross section as a function of the transverse momentum, qT . Using the Collins-Soper-Sterman
(CSS) formalism, we study the matching between the region where fixed order perturbative QCD
can successfully be applied and the region where soft gluon resummation is necessary. We find
that the commonly used prescription of matching through the so-called Y-factor cannot be applied
in the SIDIS kinematical configurations we examine. We comment on the impact that the non-
perturbative component has even at relatively high energies.
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1. Introduction

Collinear perturbative QCD computations allow us to predict the behaviour of the cross section
of a hadronic process at high resolution scale Q, in the large qT & Q region. On the other hand,
in the low qT region one must resum the large (double) logarithmic contributions generated by the
emission of soft and collinear gluons.

This can be achieved by applying a soft gluon resummation scheme like, for instance, the
Collins-Soper-Sterman (CSS) scheme [1], which was originally formulated and extensively tested
for Drell-Yan (DY) process, h1h2 → `+`−X [1, 2, 3, 4, 5]. In the case of Semi-Inclusive Deep
Inelastic Scattering (SIDIS) process, `N → `hX , resummation was studied in Refs. [6, 7, 8]. In
the CSS formalism, the resummation is performed in the badly divergent (asymptotic) part of the
perturbative cross section σASY , which is separated from the regular part (i.e. less singular than
1/q2

T ) commonly known as the Y -term. In the resummed part, some model-dependence has to
be introduced to parametrize the non-perturbative component of the cross section. This model
dependence enters in a non-trivial way, since the CSS resummation is done in Fourier space.

A successful resummation scheme should take care of matching the fixed order hadronic cross
section, computed in perturbative QCD at large qT , with the resummed cross section, valid at low
qT � Q, where large logarithms are properly treated. This matching should happen, roughly, at
qT ∼Q where logarithms are small [1], and is very often realized through the Y-term, which should
ensure a continuous and smooth matching of the cross section over the entire qT range.

In this summary we will describe some specific matching procedures, discuss the delicate
interplay between the perturbative and non-perturbative parts of the hadronic cross section and
give numerical examples, exploring different kinematical configurations of SIDIS experiments.

2. Resummation in Semi-Inclusive Deep Inelastic Scattering

The starting point for the CSS scheme is the separation of the badly divergent part of the pQCD
calculation of the cross section, dσASY , from the regular part, the so called Y-term. Starting from
the Next-to-Leading order SIDIS cross section one has

dσNLO

dxdydzdq2
T
=

dσASY

dxdydzdq2
T
+Y . (2.1)

Then, one performes the resummation in the asymptotic term alone. In unpolarized SIDIS pro-
cesses, `N→ `hX , the following CSS expression [6, 7] holds

dσ total

dxdydzdq2
T
= πσ

DIS
0

∫ d2bbbT eiqqqT ·bbbTTT

(2π)2 W SIDIS(x,z,bT ,Q)+Y SIDIS(x,z,qT ,Q) , (2.2)

where qT is the virtual photon momentum in the frame where the incident nucleon N and the
produced hadron h are head to head, and

σ
DIS
0 =

4πα2
em

sxy2

(
1− y+

y2

2

)
. (2.3)
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In the CSS resummation scheme, the term W SIDIS(x,z,bT ,Q) in Eq. (2.2) resums the soft gluon
contributions, large when qT � Q:

W SIDIS(x,z,bT ,Q) = exp [Spert(bT ,Q)]∑
j

e2
j ∑

i,k
Cin

ji ⊗ fi(x,µ2
b )Cout

k j ⊗Dk(z,µ2
b ), (2.4)

where j = q, q̄ runs over all quark flavors available in the process, i,k = q, q̄,g, and

Spert(bT ,Q) =−
Q2∫

µ2
b

dµ2

µ2

[
A(αs(µ)) ln

(
Q2

µ2

)
+B(αs(µ))

]
(2.5)

is the perturbative Sudakov form factor. In Eq. (2.4), the Wilson coefficients Cin
ji , Cout

k j are con-
voluted with the collinear distribution and fragmentation functions, evaluated at the intermediate
scale µb(bT ) = C1/bT . These Wilson coefficients, as well as A and B in Eq. (2.5), are functions
that can be expanded in series of αs. For our studies, we use Next-to-Leading Log (NLL) accuracy
(for more details, see for instance [1, 9, 4, 7]).

The CSS formalism relies on a Fourier integral (2.2) over bT which runs from zero to infinity.
At very large values of bT , both the Sudakov form factor ( S) and the collinear functions f and
D in (2.4) involve the evaluation of αs at low scales. In order to avoid this, one must introduce a
prescription to "freeze“ bT . This can be achieved by making the replacement µb(bT )→ µb(b∗) in
Eq (2.4), where

b∗ =
bT√

1+b2
T/b2

max

. (2.6)

With this replacement, one must also introduce the model-dependent function SNP, in order to
parametrize the non-perturbative part "avoided” by the b∗-prescription. Then, one can write the
SIDIS cross section as

dσ total

dxdydzdq2
T

= πσ
DIS
0

∞∫
0

dbT bT

(2π)
J0(qT bT )W SIDIS(x,z,b∗,Q)exp [SNP(x,z,bT ,Q)]

+ Y (x,z,qT ,Q) , (2.7)

where the angular integral in the Fourier transform has been performed. The predictive power of
the bT -space resummation formalism is limited by our inability to calculate the non-perturbative
distributions at large bT . However, most of these non-perturbative distributions are believed to be
universal and can be extracted from experimental data on different processes.

3. Results

Before testing matching prescriptions, we underline the main idea behind Y-term matching.
Considering first the expression in Eq. (2.2) the cross section can be written in a short-hand notation
as

dσ
total =W +Y =W +(dσ

NLO−dσ
ASY ) . (3.1)
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In the region where qT ' Q, the resummed cross section W is expected to be very similar to its
asymptotic counterpart, dσASY . Therefore, the cross section in Eq. (3.1) should almost exactly
match the NLO cross section, dσNLO:

dσ
total =W +Y

qT∼Q−−−→ dσ
ASY +Y = dσ

ASY +dσ
NLO−dσ

ASY = dσ
NLO . (3.2)

This matching prescription at qT ' Q only works if W ' dσASY over a non-negligible range of qT

values. Of course, in order to write down the cross section, one must include its non-perturbative
component. Then one should ask the question of what impact this model-dependent part has in the
calculation, and ultimately in the matching. Model dependence enters through the function SNP,
but also through the b∗-prescription. We choose a parametric form for SNP consistent with the one
succesfully used in DY processes, namely

SNP =

(
−g1

2
−

g1 f

2z2 −g2 ln
(

Q
Q0

))
b2

T . (3.3)

Fig. 1 shows the impact on the calculation of the resummed cross section, when varying the pa-
rameters g1 and g1 f in Eq. (3.3). Fig. 2 displays the effect of changing the parameter bmax in
expresion (2.6). In these two cases, it is interesting to note that one can observe a mild model-
dependence only in the extreme kinematics (left panels of Figures 1 and 2). Of particular interest is
the fact that, in the region of current data (HERMES and COMPASS kinematics), at NLL accuracy
the model-dependence prevails even at large values of qT .
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Figure 1: Resummed term of the SIDIS cross section including the non-perturbative contribution SNP in the
Sudakov factor, calculated at three different values of g1 and g1 f and corresponding to the three different
SIDIS kinematical configurations: on the left panel

√
s = 1 TeV, Q2 = 5000 GeV2, x = 0.055 and z = 0.325;

on the central panel a HERA-like experiment with
√

s= 300 GeV, Q2 = 100 GeV2, x= 0.0049 and z= 0.325;
on the right panel, a COMPASS-like experiment with

√
s= 17 GeV, Q2 = 10 GeV2, x= 0.055 and z= 0.325.

Here bmax = 1.0 GeV−1.

This model dependence is, quite likely, one of the reasons why Y-term matching is not possible
as it is shown in Fig. 3, where it can be seen that the NLL resummed cross section, inlcuding model
dependence (and now labeled as W NLL), largely overshoots the asymptotic cross section dσASY in
the region where they are expected to have a similar size. This means that a cancellation like the
one shown in Eq. (3.2) cannot happen and in turn, the full NLL cross section W NLL +Y can never
be match with the pQCD calculation dσNLO. It is interesting to notice that in the kintematics where
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Figure 2: The resummed cross section W NLL(qT ) corresponding to the three different SIDIS kinematical
configurations defined in Fig. 1. Here bmax varies from 1.5 GeV−1 to 0.5 GeV−1, while g1 and g1 f are fixed
at g1 = 0.3 GeV2, g1 f = 0.1 GeV2.

data is available, the Y-term actually has a sizeable contribution to the cross section at low qT .
In this region, it is usually expected that the resummed part W NLL accounts for most of the cross
section.

As an attempt to account for the model-dependence in the matching, we write the SIDIS cross
section as

dσ
total =W NLL−W FXO +dσ

NLO , (3.4)

where W FXO is the NLL resummed cross section approximated at first order in αs, and contains the
same non-perturbative function SNP as does W NLL (see [10] for a precise definition). In the absence
of the non-perturbative function and under some approximations involving the leading power of
αs, it can be shown that W FXO→ dσASY so that, in this limit [11, 12]

dσ
total =W NLL−W FXO +dσ

NLO→W NLL−dσ
ASY +dσ

NLO =W NLL +Y . (3.5)

In this limit this prescription is equivalent to the Y-term matching prescription of Eq. (3.2). It is
therefore reasonable to expect to find a region in which W FXO 'W NLL, allowing to match the
SIDIS cross section dσ =W NLL−W FXO +dσNLO to the purely perturbative cross section dσNLO.
Fig. 4 shows the different terms of the cross section in Eq. (3.4), where now W FXO plays the role
that dσASY did in Eq. (3.1). There, one can see that W FXO has a better behaviour, relative to W NLL,
than dσASY did (see Fig. 3). For instance, both W FXO and W NLL become negative at very similar
values of qT . Furthermore, one can see that in the cases shown in Fig. 4, there is a region where
these two quantities have the same size. Unfortunately, this does not happen anywhere close to the
region qT ' Q, where one would expect to match to dσNLO. Therefore, no smooth and continuous
matching can be performed.

Finally, we would like to point at the fact that the perturbative Sudakov factor plays a central
role in the behaviour of the resummed cross section. In fact, the reason why our latter attempt to
perform the matching failed can be likely attributed to the problem of expanding Spert to a definite
accuracy in powers of αs (see [10] for a more detailed discussion of this point). In general, Spert

is a very intricate quantity that should never be overlooked. In order to ilustrate this, we compare
two common approaches to calculate Spert . In the first one, we numerically compute Spert from
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Figure 3: dσNLO, dσASY , W NLL and the sum W NLL +Y (see Eq. (3.2)), corresponding to the three different
SIDIS kinematical configurations defined in Fig. 1. Here bmax = 1.0 GeV−1, g1 = 0.3 GeV2, g1 f = 0.1
GeV2, g2 = 0 GeV2.
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Figure 4: dσNLO, W NLL and W FXO (see Eq. (3.4)), corresponding to three different SIDIS kinematical
configurations. Here bmax = 1.0 GeV−1, g1 = 0.3 GeV2, g1 f = 0.1 GeV2, g2 = 0 GeV2.

Eq. (2.5). In the second one, we use an analytic expression obtained in Ref. [7], for which the
replacement

log(Q2/µ
2
b )→ log(1+Q2/µ

2
b ) , (3.6)

was made in Eq. (2.5). This replacement leads to a modified, better behaved Spert as bT → 0 [13,
14]. Fig. 5 shows both the standard and modified Spert . For the extreme kinematics, in the left panel,
one can see that it is only in the region of large bT where significant differences arise. Large bT

behaviour is commonly asociated to non-perturbative physics, which should be accounted for via
SNP, so at these kinematics, both the standard and modified Spert seem equally suitable for calculate
the cross section. As seen in the right panel of Fig. 5, this is not the case at low energies (compatible
to those of COMPASS and HERMES), or even a moderately high energies (central panel). In both
cases, there is a sizeable difference even in the low-bT regime. Interestingly enough, at kinematics
similar to available data by COMPASS and HERMES, the modified Spert would have almost no
effect in the calculation of the resummed cross section, i.e. exp(−Spert)' 0.
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