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1. Introduction

Understanding the spin structure of nucleons remains an important unresolved problem in QCD. A
major focus of investigations in recent years has centred around settling the so-called spin crisis,
which refers to results obtained by the European Muon Collaboration (EMC) [1] that appeared
to suggest that quarks accounted for a relatively small amount of the spin of the proton. This
seemingly surprising result has since led to many proposed solutions, a significant proportion of
which involve splitting the QCD angular momentum operator up in different ways, and arguing a
particular physical interpretation of the resulting pieces. It turns out that spatial boundary operators
play a particularly important role in these decompositions [2, 3, 4, 5, 6], and yet the treatment
of these terms is often justified using classical-type arguments, which may no longer hold in the
physical quantised theory. In these proceedings, we summarise an approach [7] which aims to
address these issues from a more rigorous quantum field theory (QFT) perspective.

2. The QCD angular momentum decomposition

To discuss the issues related to the decompositions of the QCD angular momentum operator Ji
QCD

proposed in the literature [2, 3, 4, 5, 6], one must first determine the structure of the QCD Lorentz
current Mµνλ

QCD. In one of the first discussions of possible Ji
QCD decompositions in the literature [2],

it was shown that it is possible to write this current in the following way:
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i
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By applying the canonical definition for the angular momentum charge Ji
QCD := 1

2 ε i jk ∫ d3x M0 jk
QCD,
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QCD can then be written:
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(2.2)

If one chooses to drop the spatial boundary operators S i
1 and S i

2, the resulting expression is referred
to as the Jaffe-Manohar decomposition [6]. This process of decomposing the angular momentum
operator into various pieces, and dropping spatial boundary terms, is in fact common to many of
the decompositions proposed in the literature [2, 4, 5, 6]. The advantage of this procedure is that
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one ends up with expressions where the individual terms involve either only quark or only gluon
fields, which makes it suggestive to interpret each of these terms as corresponding to physically
distinct angular momentum sources. However, the requirement that these operator decompositions
hold depends solely on whether it is possible to ignore spatial boundary operators of the form:∫

d3x ∂iBi(x) (2.3)

The argument which is often used to justify dropping these terms is that one can invoke Stokes’
Theorem, and by assuming that Bi(x) vanishes at spatial infinity this then implies the vanishing of
the operator. However, as will be discussed in section 3, these arguments in general no longer hold
for a quantised field theory, and so the question of whether spatial boundary operators vanish is
more subtle. Nevertheless, if one accepts the validity of these angular momentum decompositions,
then one can form a matrix element sum rule by inserting a certain component of these operators
between some physical polarised state. In the case of the proton spin sum rules, which are often
used to explain the spin crisis observed by the EMC, the z-components of the operators in the Jz

QCD
decomposition are inserted between z-polarised proton states. For the Jaffe-Manohar decomposi-
tion in particular, the matrix elements formed in this way from the operators Sz

q,L
z
q and Sz

g,L
z
g are

interpreted as the contributions to the z-component of the internal spin and orbital angular momen-
tum of the proton from the quarks Sq,Lq and gluons Sg,Lg respectively [2, 3]. Since the proton has
a total angular momentum of one-half, the Jaffe-Manohar sum rule takes the following form:

1
2
= Sq +Lq +Sg +Lg (2.4)

where a sum over quark flavour is also implicitly contained in the terms Sq and Lq. It is then
often stated that the apparent smallness of Sq measured by the EMC can be explained by the non-
vanishing of the remaining terms. In other words, the rest of the spin of the proton comes from the
internal spin of the gluons as well as the orbital angular momentum of the quarks and gluons.

3. Spatial boundary operators

As mentioned in section 2, the issue of when spatial boundary operators vanish in a QFT is more
subtle than for the corresponding classical theory. The reason behind this is that quantised fields
are not operator-valued functions as one might assume, but are in fact operator-valued distributions.
Distributions, unlike functions, are in general not point-wise defined [8], which means that one
cannot always guarantee that the requirement for a quantised field Bi(x) to satisfy a boundary
condition, such as to vanish at spatial infinity, always makes sense. Distributions by definition
must also be smeared with some suitable test function f , which means that a quantised field ϕ(x)
is not by itself an operator, only the smeared expression: ϕ( f ) :=

∫
d4x ϕ(x) f (x) is. This approach

of treating quantised fields as distributions is actually one of a series of axioms which are employed
in rigorous formulations of QFT. Although different schemes have been proposed [8, 9, 10, 11],
these approaches generally consist of a common core set of axioms, from which one can derive
more general results. In the case of spatial boundary operators, it turns out that one can use this
approach to determine both a necessary and sufficient condition on when these operators vanish in
the Hilbert space of physical states H [7]:
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Theorem 1.
∫

d3x ∂iBi vanishes in H ⇐⇒
∫

d3x ∂iBi|0〉= 0

The surprising conclusion of this theorem is that the vanishing of a spatial boundary operator only
requires that the corresponding operator annihilates the vacuum state |0〉, and does not depend on
how it acts on the full space of states. However, in order to practically determine whether this
operator annihilates the vacuum or not, it is easier instead to consider equivalent matrix element
conditions. These conditions have the following form [7]:

If 〈Ψ|
∫

d3x ∂iBi|0〉= 0, ∀|Ψ〉 ∈H =⇒
∫

d3x ∂iBi|0〉= 0 (3.1)

If ∃|Ψ〉 ∈H s.t. 〈Ψ|
∫

d3x ∂iBi|0〉 6= 0 =⇒
∫

d3x ∂iBi|0〉 6= 0 (3.2)

These relations imply that if one can find any state |Ψ〉 ∈H such that: 〈Ψ|
∫

d3x ∂iBi|0〉 6= 0, then
this definitively proves that:

∫
d3x ∂iBi|0〉 6= 0, and hence by Theorem 1:

∫
d3x ∂iBi 6= 0. Otherwise,

it must be the case that:
∫

d3x ∂iBi|0〉 = 0, and thus:
∫

d3x ∂iBi = 0. Using the transformation
property of fields under translations, it then follows [7] that the vanishing or non-vanishing of
spatial boundary operators can be directly attributed to the vanishing or non-vanishing of the matrix
elements 〈Ψ|Bi(0)|0〉.

4. Boundary terms in the proton spin sum rule

In section 2 it was outlined that in order for angular momentum operator decompositions to hold in
general, one is required to drop certain spatial boundary operators. In the case of the Jaffe-Manohar
decomposition, these operators S i

1 and S i
2 have the following form:

S i
1 =−

i
16

ε
i jk
∫

d3x ∂l

(
x j

ψ{γk, [γ0,γ l]}ψ
)

S i
2 = ε

i jk
∫

d3x ∂l

(
x jF0laAka

)
(4.1)

Using the results of section 3, one can now test whether or not these operators vanish, and hence
whether this operator decomposition holds. The simplest case is to choose the state |Ψ〉 in condi-
tions 3.1 and 3.2 to be the vacuum state |0〉. The corresponding matrix elements in this case are then
proportional to the vacuum expectation values 〈0|F0 jaAka|0〉 and 〈0|ψγ lγ5ψ|0〉. Although the first
of these condensates has to our knowledge not been determined before in the literature, the second
condensate has, and there is evidence to suggest that it may be non-vanishing [12]. From the discus-
sion in section 3 this then suggests that S i

1 is non-vanishing, and therefore casts doubt on the validity
of the Jaffe-Manohar angular momentum operator decomposition: Ji

QCD = Si
q +Li

q +Si
g +Li

g.

Often in the derivation of proton spin sum rules it is firstly assumed that the decompositions of
Jz

QCD hold exactly on an operator level, and then the decomposed expression for Jz
QCD is inserted

between polarised proton states. But it seems, as demonstrated in the case of the Jaffe-Manohar
decomposition, that this reasoning may not necessarily be correct. Nevertheless, it may be the
case that the corresponding spatial boundary operators are in general non-vanishing, but do vanish
when inserted between the proton states, and thus the proton spin sum rule itself continues to hold.
However, it appears for the Jaffe-Manohar decomposition as though this is not the case [7], and
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therefore that the Jaffe-Manohar sum rule in equation 2.4 may not actually hold. It is interesting
to note that the apparent failure to construct the Jaffe-Manohar decomposition of Ji

QCD arises be-
cause of the existence of non-vanishing spatial boundary operator matrix elements, and in the case
where |Ψ〉= |0〉, non-vanishing condensates. So physically speaking, it appears that it is the non-
trivial vacuum structure of QCD which obstructs the decomposition of distinct quark and gluon
observables in this way.

5. Conclusions

An important unresolved question in QCD is whether there exist meaningful quark-gluon angular
momentum operator decompositions. A common feature of these decompositions is the necessity
to ignore spatial boundary operators. However, for quantised field theories it turns out that this is
not always the case. By using a more rigorous QFT approach, it is possible though to establish a
concrete condition on when these terms vanish. It turns out that a necessary and sufficient condition
for this class of operators to vanish is that the operator must annihilate the vacuum state. Applying
this condition to the specific case of the boundary operators which feature in the Jaffe-Manohar
decomposition, it appears as though at least one of these operators is non-vanishing, and therefore
that the decomposition of Ji

QCD does not hold. As a result, this means that the Jaffe-Manohar sum
rule formed from this decomposition may no longer be valid. From a physical perspective, it seems
that the failure of this decomposition, and hence the obstruction to form distinct quark and gluon
observables in this way, arises because of the non-trivial vacuum structure of QCD.
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