

Kaon Decay into Three Photons Revisited

Shu-Yu Ho*

Department of Physics, California Institute of Technology Pasadena, CA 91125, USA E-mail: sho3@caltech.edu

Jusak Tandean[†]

Department of Physics and Center for Theoretical Sciences, National Taiwan University Taipei 106, Taiwan E-mail: jtandean@yahoo.com

We take another look at the rare kaon decay into three photons. Specifically, after imposing the requirements of gauge invariance and Bose symmetry, we derive a general form of the decay amplitude, including both parity-conserving and parity-violating contributions. Subsequently, we adopt a chiral-Lagrangian approach in conjunction with dimensional analysis arguments to estimate the branching ratios of $K_{L,S} \rightarrow 3\gamma$ in the standard model, obtaining values as large as $\mathscr{B}(K_L \rightarrow 3\gamma) \simeq 7 \times 10^{-17}$ and $\mathscr{B}(K_S \rightarrow 3\gamma) \simeq 1 \times 10^{-19}$, which exceed those found previously by a few orders of magnitude. Measurements of $\mathscr{B}(K_{L,S} \rightarrow 3\gamma)$ substantially bigger than these numbers would likely hint at the presence of new physics beyond the standard model.

Flavor Physics & CP Violation 2015 May 25-29, 2015 Nagoya, Japan

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

[†]This research was supported in part by the National Science Council and National Center for Theoretical Sciences of Taiwan.

The kaon decays into three photons, $K_{\rm L} \rightarrow 3\gamma$ and $K_{\rm S} \rightarrow 3\gamma$, can happen in the absence of *CP* violation. Based on the experimental branching ratio $\mathscr{B}(K_{\rm L} \rightarrow 2\gamma) \simeq 5.5 \times 10^{-4}$ [1], one might then naively expect that $\mathscr{B}(K_{\rm L} \rightarrow 3\gamma) \sim \alpha_{\rm em} \mathscr{B}(K_{\rm L} \rightarrow 2\gamma) \sim 4 \times 10^{-6}$. However, this is already way higher than the existing measured limit $\mathscr{B}(K_{\rm L} \rightarrow 3\gamma) < 7.4 \times 10^{-8}$ [1, 2]. As for its $K_{\rm S}$ counterpart, there is currently no empirical information available about it, but its rate is likely to be more suppressed than expected as well.

The considerable smallness of the $K \rightarrow 3\gamma$ rate turns out to stem from the conditions imposed on the decay amplitude by gauge invariance and Bose symmetry [3]. Gauge invariance compels the total angular momentum J of any two photons in the 3γ final-state to be nonzero, while Bose statistics disallows the $\gamma\gamma$ pair having J = 1. Since each pair of the photons has $J \ge 2$, the amplitude suffers from a sizable number of angular-momentum suppression factors.

The $K_{L,S} \rightarrow 3\gamma$ rates were first estimated over 2 decades ago in [3], using a simple model in which $K \rightarrow 3\gamma$ proceeds from $K \rightarrow \pi^0 \pi^0 \gamma$ with $\pi^0 \pi^0$ immediately converting into $\gamma\gamma$. This led to $\mathscr{B}(K_L \rightarrow 3\gamma) \sim 3 \times 10^{-19}$ and $\mathscr{B}(K_S \rightarrow 3\gamma) \sim 5 \times 10^{-22}$ [3]. As this rough determination relied on only 1 diagram, possibly other contributions exist that can enhance the rates. Here we present the results of a more recent study [4] revisiting these decays and attaining much higher numbers.

The $K \rightarrow 3\gamma$ amplitude generally consists of two terms describing the parity conserving (PC) and parity violating (PV) components of the transition, namely

$$\mathscr{M}(K \to 3\gamma) = \mathscr{M}_{PC}^{K} + \mathscr{M}_{PV}^{K}, \qquad \mathscr{M}_{PC}^{K} = \varepsilon_{1\alpha}^{*} \varepsilon_{2\eta}^{*} \varepsilon_{3\mu}^{*} M_{PC}^{\alpha\eta\mu}, \qquad \mathscr{M}_{PV}^{K} = \varepsilon_{1\alpha}^{*} \varepsilon_{2\eta}^{*} \varepsilon_{3\mu}^{*} M_{PV}^{\alpha\eta\mu}, \quad (1)$$

where $\varepsilon_{1,2,3}$ are the photon polarization vectors. Each of $\mathscr{M}_{PV,PC}^{K}$ has to respect gauge invariance and be symmetric under interchange of any two of the photons. As discussed in detail in [4], imposing these requirements with on-shell photons, after some algebra we arrive at¹

$$\begin{aligned} M_{\rm PV}^{\alpha\eta\mu} &= \left[g^{\alpha\eta} \left(k_1^{\mu} y - k_2^{\mu} x \right) + g^{\eta\mu} \left(k_2^{\alpha} x - k_3^{\alpha} z \right) + g^{\alpha\mu} \left(k_3^{\eta} z - k_1^{\eta} y \right) + k_3^{\alpha} k_1^{\eta} k_2^{\mu} - k_2^{\alpha} k_3^{\eta} k_1^{\mu} \right] G(x, y, z) \\ &+ \left(g^{\alpha\eta} z - k_2^{\alpha} k_1^{\eta} \right) \left(k_1^{\mu} y - k_2^{\mu} x \right) F(x, y, z) + \left(g^{\eta\mu} y - k_3^{\eta} k_2^{\mu} \right) \left(k_2^{\alpha} x - k_3^{\alpha} z \right) F(z, x, y) \\ &+ \left(g^{\alpha\mu} x - k_3^{\alpha} k_1^{\mu} \right) \left(k_3^{\eta} z - k_1^{\eta} y \right) F(y, z, x) , \end{aligned}$$
(2)

$$\begin{split} M_{\rm PC}^{\alpha\eta\mu} &= \left(g^{\alpha\eta}\varepsilon^{\mu\rho\sigma\tau} + g^{\rho\sigma}\varepsilon^{\alpha\eta\mu\tau} + g^{\eta\rho}\varepsilon^{\alpha\mu\sigma\tau} - g^{\alpha\sigma}\varepsilon^{\eta\mu\rho\tau} + g^{\eta\mu}\varepsilon^{\alpha\rho\sigma\tau} + g^{\sigma\tau}\varepsilon^{\alpha\eta\mu\rho} + g^{\mu\sigma}\varepsilon^{\alpha\eta\rho\tau} \right. \\ &- g^{\eta\tau}\varepsilon^{\alpha\mu\rho\sigma} + g^{\alpha\mu}\varepsilon^{\eta\rho\sigma\tau} + g^{\rho\tau}\varepsilon^{\alpha\eta\mu\sigma} + g^{\mu\rho}\varepsilon^{\alpha\eta\sigma\tau} - g^{\alpha\tau}\varepsilon^{\eta\mu\rho\sigma}\right)k_{1\rho}k_{2\sigma}k_{3\tau}\mathscr{G}(x,y,z)/3 \\ &+ \left[\left(g^{\alpha\eta}z - k_2^{\alpha}k_1^{\eta}\right)\varepsilon^{\mu\rho\sigma\tau}\mathscr{F}(x,y,z) + \left(g^{\eta\mu}y - k_3^{\eta}k_2^{\mu}\right)\varepsilon^{\alpha\rho\sigma\tau}\mathscr{F}(z,x,y) \right. \\ &+ \left(g^{\alpha\mu}x - k_3^{\alpha}k_1^{\mu}\right)\varepsilon^{\eta\rho\sigma\tau}\mathscr{F}(y,z,x)\right]k_{1\rho}k_{2\sigma}k_{3\tau} \\ &+ \left[\left(k_2^{\mu}k_1^{\tau} - k_1^{\mu}k_2^{\tau}\right)\varepsilon^{\alpha\eta\rho\sigma}\mathscr{H}(x,y,z) + \left(k_3^{\alpha}k_2^{\rho} - k_2^{\alpha}k_3^{\rho}\right)\varepsilon^{\eta\mu\sigma\tau}\mathscr{H}(z,x,y) \right. \\ &+ \left(k_1^{\eta}k_3^{\sigma} - k_3^{\eta}k_1^{\sigma}\right)\varepsilon^{\alpha\mu\rho\tau}\mathscr{H}(y,z,x)\right]k_{1\rho}k_{2\sigma}k_{3\tau} \,, \end{split}$$

where $k_{1,2,3}$ are the photon momenta, $x = k_1 \cdot k_3$, $y = k_2 \cdot k_3$, $z = k_1 \cdot k_2$, and the functions *F*, *G*, \mathscr{F}, \mathscr{G} , and \mathscr{H} must be free of kinematic singularities and satisfy the relations

$$F(u,v,w) = -F(v,u,w), \qquad G(u,v,w) = -G(v,u,w) = -G(w,v,u) = -G(u,w,v),$$

$$\mathcal{F}(u,v,w) = -\mathcal{F}(v,u,w), \qquad \mathcal{H}(u,v,w) = -\mathcal{H}(v,u,w),$$

$$\mathcal{G}(u,v,w) = -\mathcal{G}(v,u,w) = -\mathcal{G}(w,v,u) = -\mathcal{G}(u,w,v).$$
(4)

with u, v, w each being any one of the invariants $k_i \cdot k_j$.

¹We derived M_{PC} in (3) with the aid of Schouten's identity, more examples of which can be found in [5].

In the sum of $|\mathcal{M}_{PV}^{K} + \mathcal{M}_{PC}^{K}|^{2}$ over the photon polarizations, the interference between $\mathcal{M}_{PV,PC}^{K}$ vanishes. The corresponding decay rate is given by

$$\Gamma(K \to 3\gamma) = \frac{1}{256\pi^3 m_K^3} \frac{1}{3!} \int ds_{12} \, ds_{23} \, \sum_{\text{pol}} \left(\left| \mathcal{M}_{\text{PV}}^K \right|^2 + \left| \mathcal{M}_{\text{PC}}^K \right|^2 \right), \tag{5}$$

$$\begin{split} \sum_{\text{pol}} \left| \mathcal{M}_{\text{PV}}^{K} \right|^{2} &= 4 \Big\{ |F_{1}|^{2} z^{2} + |F_{2}|^{2} y^{2} + |F_{3}|^{2} x^{2} + 2 |G(x,y,z)|^{2} \\ &+ \text{Re} \Big[F_{1}^{*} F_{2} yz + F_{2}^{*} F_{3} xy + F_{3}^{*} F_{1} xz + 2 \big(F_{1}^{*} z + F_{2}^{*} y + F_{3}^{*} x \big) G(x,y,z) \big] \Big\} xyz , \\ \sum_{\text{pol}} \left| \mathcal{M}_{\text{PC}}^{K} \right|^{2} &= 4 \Big\{ \left(|\mathcal{F}_{1}|^{2} + |\mathcal{H}_{1}|^{2} \right) z^{2} + \left(|\mathcal{F}_{2}|^{2} + |\mathcal{H}_{2}|^{2} \right) y^{2} + \left(|\mathcal{F}_{3}|^{2} + |\mathcal{H}_{3}|^{2} \right) x^{2} + 2 |\mathcal{G}(x,y,z)|^{2} \\ &+ \text{Re} \Big[\big(\mathcal{F}_{1}^{*} + \mathcal{H}_{1}^{*} \big) \big(\mathcal{F}_{2} + \mathcal{H}_{2} + 2 \mathcal{G}(x,y,z) / y \big) yz \\ &+ \big(\mathcal{F}_{2}^{*} + \mathcal{H}_{2}^{*} \big) \big(\mathcal{F}_{3} + \mathcal{H}_{3} + 2 \mathcal{G}(x,y,z) / x \big) xy \\ &+ \big(\mathcal{F}_{3}^{*} + \mathcal{H}_{3}^{*} \big) \big(\mathcal{F}_{1} + \mathcal{H}_{1} + 2 \mathcal{G}(x,y,z) / z \big) xz \Big] \Big\} xyz , \end{split}$$

where the 3! accounts for the 3 photons being identical particles, $s_{mn} = (k_m + k_n)^2$, $F_1 = F(x, y, z)$, $F_2 = F(z, x, y)$, $F_3 = F(y, z, x)$, and similarly for $\mathscr{F}_{1,2,3}$ and $\mathscr{H}_{1,2,3}$. We note that the preceding formulas apply more generally to any other neutral pseudoscalar particle decaying into 3γ , and they also work for the decay of a neutral scalar particle if the PC and PV parts are interchanged.

To explore the leading contributions, we adopt a chiral-Lagrangian approach [6]. Accordingly, they are expected to arise from the relevant portions in the chiral expansion and yield terms in the functions F, G, \mathscr{F} , \mathscr{G} , and \mathscr{H} with the lowest numbers of powers of the photon momenta k_i . Since there are in principle many contributions to the amplitude, from tree and loop diagrams, with unknown parameters, it suffices to consider just one representative and rely on dimensional-analysis arguments to evaluate its size.

Treating $K_{\rm L} \to 3\gamma$ first and ignoring *CP* violation, we can focus on $\mathscr{M}_{\rm PV}^{K}$. From the simplest formulas $F(u,v,w) = c_F(u-v)$ and $G(u,v,w) = c_G[(u-v)f(w) + (v-w)f(u) + (w-u)f(v)]$ fulfilling (4), with $c_{F,G}$ being constants and f any well-behaved function, we see that F and G contain at least 2 and 4 powers of k_i , respectively. Thus $M_{\rm PV}$ involves at least 7 powers of k_i .

To assess the leading contributions to M_{PV} , we look at a weak chiral Lagrangian for standardmodel strangeness-changing, $|\Delta S| = 1$, transitions which is parity odd, has 7 derivatives, and couples K to 3γ in a gauge-invariant way. As is well known, such a chiral Lagrangian proceeds from the dominant left-handed chiral octet piece of the weak interactions of light quarks [6] and has to be invariant under the *CP* transformation combined with the switching of *s* and *d* quarks [7]. An example with the desired properties is

$$\mathscr{L}_{\rm PV} = c_7 \left\langle \xi^{\dagger} h \xi \left(\nabla^{\alpha} \mathscr{V}^{\mu\nu} \right) \left[\mathscr{U}^{\rho} \nabla_{\alpha} \mathscr{V}_{\rho\sigma} + \left(\nabla_{\sigma} \mathscr{V}_{\rho\alpha} \right) \mathscr{U}^{\rho} \right] \nabla^{\sigma} \mathscr{V}_{\mu\nu} \right\rangle + \text{H.c.}$$

$$= \frac{8\sqrt{2} c_7 e^3}{27 f_{\pi}} \partial^{\alpha} F^{\mu\nu} \left(\partial_{\alpha} F_{\rho\sigma} + \partial_{\sigma} F_{\rho\alpha} \right) \partial^{\rho} \bar{K}^0 \partial^{\sigma} F_{\mu\nu} + \dots + \text{H.c.} , \qquad (6)$$

where c_7 is a constant, $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is the usual photon field strength tensor, and other details can be found in [4]. This translates into

$$F(u,v,w) = \frac{32\sqrt{2}\,ic_7\,e^3}{27\,f_\pi}(u-v)\,,\qquad G(u,v,w) = 0\,. \tag{7}$$

Assuming CP conservation and adopting the convention $K_{\rm L} = (K^0 + \bar{K}^0)/\sqrt{2}$, we then obtain

$$\sum_{\text{pol}} |\mathscr{M}(K_{\text{L}} \to 3\gamma)|^2 = \frac{|128c_7|^2 e^6}{729 f_{\pi}^2} (x^2 y^2 + y^2 z^2 + x^2 z^2 - xyz^2 - xy^2 z - x^2 yz) xyz.$$
(8)

Since it is not yet possible to compute c_7 rigorously from the quark-level parameters, we estimate it with the aid of naive dimensional analysis [8]. Thus we get the order-of-magnitude value

$$c_7 \sim \frac{G_{\rm F} \lambda_{\rm C} f_{\pi}^4}{\sqrt{2} \Lambda^8} \simeq 1.0 \times 10^{-9} \,{\rm GeV}^{-6} \,,$$
(9)

where $\lambda_{\rm C} = 0.22$ is the Cabibbo mixing parameter and Λ represents the scale at which the chiral Lagrangian approach breaks down, which suggests we set $\Lambda = m_{\rho} = 775 \,\text{MeV}$ [1]. The resulting branching ratio is $\mathscr{B}(K_{\rm L} \to 3\gamma) \sim 7.4 \times 10^{-17}$.

As for $K_S \to 3\gamma$, the amplitude is dominated by \mathscr{M}_{PC}^K , and we can pick the leading-order form $\mathscr{F}(u,v,w) \sim \mathscr{H}(u,v,w) = \tilde{c}(u-v)$ with \tilde{c} being a constant and $\mathscr{G} = 0$, satisfying (4). Hence the situation is similar to that of \mathscr{M}_{PV}^K with F and G in (7). More precisely, making a comparison of $\Sigma_{pol}|\mathscr{M}_{PC}^K|^2$ and $\Sigma_{pol}|\mathscr{M}_{PV}^K|^2$ above for the two cases, respectively, one can see that their decay distributions have the same functional dependence on x, y, and z. It follows that $\Gamma(K_S \to 3\gamma)$ can be expected to be roughly of the same order as $\Gamma(K_L \to 3\gamma)$. Interestingly, the measured rates of their 2γ counterparts are also of similar order, $\Gamma(K_S \to 2\gamma) \sim 2.7 \Gamma(K_L \to 2\gamma)$ [1]. In view of $\mathscr{B}(K_L \to 3\gamma)$ in the last paragraph, we can therefore predict that $\mathscr{B}(K_S \to 3\gamma) \sim 1 \times 10^{-19}$.

In conclusion, we have revisited the rare kaon decay $K \to 3\gamma$, which is expected to be much suppressed because its amplitude has a large number of angular momentum suppression factors. We construct a general form of the amplitude which adheres to the requisites of gauge invariance and Bose symmetry and includes both parity-conserving and parity-violating components. In addition, we provide an expression for the squared amplitude, summed over the photon polarizations, which can be useful to produce a Dalitz plot distribution of the decay. These results are applicable generally to the decay of any spinless particle into 3γ . More specifically, we explore the leading-order contributions to the amplitudes for $K_{L,S} \to 3\gamma$ in the standard model by means of a chiral-Lagrangian technique along with dimensional-analysis reasoning. This finally leads us to branching ratios that are bigger by a few orders of magnitude than those calculated before, but still tiny. Nevertheless, any experimental findings on $\mathscr{B}(K_{L,S} \to 3\gamma)$ significantly exceeding our predictions would likely signal the effects of new physics.

References

- [1] K.A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38, 090001 (2014).
- [2] Y.C. Tung et al. [E391a Collaboration], Phys. Rev. D 83, 031101 (2011).
- [3] P. Heiliger, B. McKellar, and L.M. Sehgal, Phys. Lett. B 327, 145 (1994).
- [4] S.Y. Ho and J. Tandean, Phys. Rev. D 82, 114010 (2010).
- [5] H.W. Fearing and S. Scherer, Phys. Rev. D 53, 315 (1996); A.L. Bondarev, Theor. Math. Phys. 101 (1994) 1376; O. Antipin and G. Valencia, Phys. Rev. D 74, 054015 (2006).
- [6] J.F. Donoghue, E. Golowich, and B.R. Holstein, *Dynamics of the Standard Model* (Cambridge University Press, Cambridge, 1992).
- [7] C.W. Bernard, T. Draper, A. Soni, H.D. Politzer, and M.B. Wise, Phys. Rev. D 32, 2343 (1985).
- [8] A. Manohar and H. Georgi, Nucl. Phys. B 234, 189 (1984); H. Georgi, Phys. Lett. B 298, 187 (1993).