PROCEEDINGS OF SCIENCE

Cartan's Supersymmetry and the Decay of $H^0(0+, 125 \text{ GeV})$ to $\gamma\gamma$, WW and ZZ

Sadataka FURUI*

arXiv:submit/1436888 [hep-ph] 21 Dec 2015

Graduate School of Science and Engineering, Teikyo University E-mail: furui@umb.teikyo-u.ac.jp

Cartan's supersymmetry can be applied not only to electromagnetic interaction but also to weak interaction of leptons and quarks. We studied the decay of the possible higgs partner $h^0(11\text{GeV})$ to $\Upsilon(b\bar{b})\gamma(\ell\bar{\ell})$, and extended the model to study the decay branching ratios of Higgs boson $H^0(125\text{GeV})$ to $W\bar{W}, Z\bar{Z}$ and $\gamma\gamma$.

The ratio of the signal strength ratio $\frac{\sigma(H^0 \to W\bar{W})}{\sigma(H^0 \to \gamma\gamma)} = \frac{0.87 \pm 0.2}{1.58 \pm 0.3}$ agrees with the ratio of the number of independent diagrams that Cartan's symmetry predicts $\frac{9}{16}$.

The extended Cartan's theory defines the amplitudes of penguin and tree diagrams of B^0 and \bar{B}^0 to $K^0 J/\Psi$, and explains the CP violation of $\bar{B}^0 \to J/\Psi \bar{K}_L^0$ as an effect of tree diagrams which is absent in $B^0 \to J/\Psi K_L^0$.

Flavor Physics & CP Violation 2015 May 25-29, 2015 Nagoya, Japan

^{*}Speaker.

Sadataka FURUI

1. Introduction

Higgs boson $H^0(0^+, 125 \text{GeV})$ decays to $\gamma \gamma(\ell \bar{\ell} \ell \bar{\ell}), W(\ell \bar{\nu}) \bar{W}(\bar{\ell} \nu)$ and $Z(\ell \bar{\ell}) \bar{Z}(\bar{\ell} \ell)$ with the ratio of the signal strength $\sigma(H^0 \to xx) = B(H^0 \to xx)_{exp}/B(H^0 \to xx)_{SM}$, equals 1.58 ± 0.3 for $\gamma\gamma$, 0.87 ± 0.2 for $W\bar{W}$ and 1.11 ± 0.3 for $Z\bar{Z}$ [1, 2]. The process of $g\bar{g} \rightarrow Z\bar{Z}$ is expected to enhance the signal strength of $Z\bar{Z}$, and including this correction, the signal strength of $Z\bar{Z}$ reduces to 0.93 ± 0.3 [3].

Cartan's supersymmetry[4] fixes couplings of two types of fermions

$$\ell_L = \begin{pmatrix} \psi \\ \mathscr{C} \psi \end{pmatrix}$$
 and $\bar{\ell}_L = (\mathscr{C} \phi, \phi).$

Cartan's supersymmetry[4] fixes couplings of two types of fermions $\ell_L = \begin{pmatrix} \Psi \\ \mathscr{C}\Psi \end{pmatrix} \text{ and } \bar{\ell}_L = (\mathscr{C}\phi, \phi).$ where $\Psi, \phi \in (C \otimes C\ell_{1,3}) f$ are Clifford algebraic spinors. The components Ψ are expressed as ξ_* , those of $\mathscr{C}\Psi$ are expressed as ξ_{***} , those of ϕ and $\mathscr{C}\phi$ are expressed as ξ_{**}, ξ_0 and ξ_{1234} , where the number of indices are expressed by *. There are two types of vector fields $\vec{E} = (x_1, x_2, x_3, x_4)$ and $\vec{E'} = (x'_1, x'_2, x'_3, x'_4).$ The transformation G_{12}, G_{123}, G_{13} and G_{132} contains the supersymmetric transformation[11, 12]. The Clifford algebra [9, 10] says that a combination of quaternions $\mathscr{H} \oplus \mathscr{H}\ell$, where ℓ is a new imaginary unit ($\ell^2 = -1$) makes an octonion \mathscr{O} . A Dirac particle which is expressed by a pair of quaternions could form an octonion and has the triality symmetry, whose extra freedom can be attributed to the color degrees of freedom. Assuming that the coupling of a Higgs bosons to two leptons and to two quarks are given by $-y_\ell^{ij}\mathscr{E}_\ell(\mathscr{L}_j \circ \mathscr{H}_d) = -y_\ell^{ij}H_d^0\bar{\ell}_{L_\ell}\ell_j$ and $-y_b^{ij}\mathscr{D}_i(\mathscr{D}_j \circ \mathscr{H}_d) = -y_b^{ij}v_d\bar{b}_ib_j$, and the coupling of a u quark to Higgs boson is given by[5] $y_u^{ij}\mathscr{U}_i(\mathscr{D}_j \circ \mathscr{H}_d) = y_u^{ij}v_u\bar{u}_iu_j$.

$$-y_{\ell}^{ij}\mathscr{E}_i(\mathscr{L}_j\circ\mathscr{H}_d) = -y_{\ell}^{ij}H_d^0\bar{\ell}_{L_i}\ell_j \quad \text{and} \quad -y_b^{ij}\mathscr{D}_i(\mathscr{Q}_j\circ\mathscr{H}_d) = -y_b^{ij}\nu_d\bar{b}_ib_j,$$

$$y_u^{ij}\mathcal{U}_i(\mathcal{Q}_j \circ \mathcal{H}_d) = y_u^{ij} \, \mathbf{v}_u \, \bar{u}_i u_j.$$

we can calculate decay branching ratios of the Higgs boson $H^0(125 \text{GeV})$, that of the possible partner $h^0(11 \text{GeV})$ and that of $B^0(\bar{B}^0)$ meson.

2.
$$H(0^+) \rightarrow VV, H(0^+) \rightarrow \gamma\gamma$$
 and $h(0^+) \rightarrow \Upsilon(b\bar{b})\gamma(\ell\bar{\ell})$

When we identify H^0 as 0^+ coupled states of $\psi\bar{\psi}$ and $\phi\bar{\phi}$, we find that the decay amplitudes of the 0^+ states to 4γ cancel with each other. Cartan's supersymmetry predicts 8 amplitudes of $\Psi = \psi \bar{\psi}$ into two $2\gamma(\ell \bar{\ell})$ and 8 amplitudes of $\Phi = \phi \bar{\phi}$ into two $2\gamma(\ell \bar{\ell})$, and altogether 16 diagrams.

The Higgs boson can be regarded as a scalar of $\langle \psi, \mathscr{C}\psi \rangle$ or $\langle \phi, \mathscr{C}\phi \rangle$. A pair of $\langle \psi, \mathscr{C}\psi \rangle$ and $\langle \phi, \mathscr{C} \phi \rangle$ can decay into a pair of $l\bar{v}$ and $\bar{l}v$, by exchanging two vector particles X, which contains 9 diagrams. The leptons or quarks that X connects are $\psi\phi$ or $\psi\psi\psi\phi$.

Experimentally the ratio of the signal strength, i.e. branching ratio normalized to the standard model value $\sigma(H^0 \to xx) = B(H^0 \to xx)_{exp}/B(H^0 \to xx)_{SM}$, of $W\bar{W}$ channel and $\gamma\gamma$ channel $\frac{\sigma(H^0 \to W\bar{W})}{\sigma(H^0 \to \gamma\gamma)}$ is $\frac{0.87 \pm 0.2}{1.58 \pm 0.3}$, agrees with the ratio of the number of independent diagrams $\frac{9}{16}$ derived from Cartan's supersymmetric theory of spinors. We expect the signal strength of $Z\bar{Z}$ agrees with that of $W\overline{W}$ after reduction of $g\overline{g}$ effects[15].

Assuming that the Higgs partner h^0 is a 0^+ and a pair of $\psi \mathscr{C} \psi$ and $\phi \mathscr{C} \phi$ decay into $\gamma(\ell \bar{\ell})$ and $\Upsilon(b\bar{b})$ via exchange of vector particles x_2 , we calculated the decay of $\chi_b(3P, 10.5157 \text{GeV})$ meson discovered by LHCb detector at CERN, to $\Upsilon(b\bar{b})\gamma(\ell \bar{\ell})$ [14]. The leptons or quarks that x_2 connects are $\psi \mathscr{C} \psi$ or $\phi \mathscr{C} \phi$.

Figure 1: Typical diagram of $H^0 \to WW \to \ell \bar{\ell} \ell \bar{\ell}$ and $h^0 \to \Upsilon \gamma(\ell \bar{\ell})$

3. Decay of $B^0(0^-) \rightarrow K^0_L J/\Psi$ v.s. $\bar{B}^0(0^-) \rightarrow \bar{K}^0_L J/\Psi$

In Cartan's theory, the electromagnetic interaction of leptons and quarks is expressed as ${}^t \psi \mathscr{C} x_i \psi$. In the case of coupling of leptons and quarks with *W*, we extend the coupling ${}^t \phi \mathscr{C} X \psi$ to ${}^t \phi \mathscr{C} X (1 - \gamma_5) \psi$, where $X = x_i$ or x_i' is the degenerate vector particle, and unify the interactions in the form

$${}^t\phi\mathscr{C}\bar{x_i}\psi+{}^t\phi\mathscr{C}\bar{x_i}\mathscr{C}\psi$$

where \bar{x}_i implies appropriate x_i or $(-\gamma_5 x_i)$ dependent on *i*[16]. We apply to the B^0 decay to $K^0 + J/\Psi$ penguin diagrams and tree diagrams and compare with experiments[7]. We observed $\gamma_5 \gamma_5$ type penguin diagrams yield \bar{K}^0 with small components and suppresses *CP* even \bar{B}^0 tagged events.

Figure 2: Typical diagrams of $\bar{B}^0 \to \bar{K}^0 J/\Psi$ decay, penguin diagram γ_5 type (left) and 11 type(right)[16]. In the $\gamma_5 \gamma_5$ type, $b = \xi_{234}$ is a small component, and corresponding B^0 decay $\bar{b} = \xi_{14}$ is a large component.

Figure 3: Typical diagrams of $B^0 \to K^0 J/\Psi$ decay, tree diagram 1 1 type(left), and γ_5 type(right). In the γ_5 type, $\bar{s} = \xi_{1234}$ is a small component, and in the corresponding \bar{B}^0 decay $s = \xi_4$ is a large component.

4. Discussion and Conclusion

The decay of a Higgs boson to $\ell \bar{\ell} \ell \bar{\ell}$ and $\ell \bar{\nu}, \bar{\ell} \nu$ can be well described by the model based on Cartan's supersymmetry[15]. The number of decay diagrams of H^0 to $W\bar{W}, Z\bar{Z}$ and $\gamma\gamma$ is 9, 9 and 16 respectively. The ratio of the signal strength agrees with the ratio of the number of independent decay diagrams.

The preference of $B_s(0^+) \to D_s^*(0^+)\mu^-$ rather than $B_s(0^+) \to B_s(0^-)\pi$ is expected to be due to the fact that *b* quark does not belong to the triality sector of μ^- , in which (s,c) quarks belong, and the decay via $D_s^*(0^+)$ after the transition of *b* to *c* of weak decay, which is blind to the triality, becomes more favored than the strong decay.

The origin of the discrepancy between the raw asymmetry of events of *CP* even final states in $B^0 \rightarrow J/\Psi K^0(\bar{B}^0 \rightarrow J/\Psi \bar{K}^0)$, and the best fit projection in Δt of B^0 tagged events and \bar{B}^0 tagged events[8] is expected to be due to effects of γ_5 type interaction of tree diagrams in the large Δt region, where *CP* asymmetry in Cartan's algebra plays an essential role[13, 16].

References

- [1] G. Aad et al. (The ATLAS Collaboration), Phys. Lett. B716,1 (2012).
- [2] G. Aad et al. (The ATLAS Collaboration), Phys. Rev. D90, 052004(2014); Eur. Phys. J. C 73 2304 (2013).
- [3] L. Finco, *in Proceedings of the Second Annual Conference on Large Hadron Collider Physics*, Columbia University, New York, U.S.A. June 2014, [hep-ex/1409.2646v2].
- [4] É. Cartan, The theory of Spinors, Dover Pub. (1966) p.118.
- [5] P. Labelle, Supersymmetry Demystified, Mc Graw Hill (2010).
- [6] K.A. Olive et al., (Particle Data Group) Chinese Physics C38, 0900001 (2014)
- [7] B. Aubert et al., (Babar Collaboration), Phys. Rev. D79,072009 (2009).
- [8] J.Bernabéu and F. Martinez-Vidal, Rev. Mod. Phys. 87,165 (2015).
- [9] P. Lounesto, in *Clifford Algebras and Spinors* 2nd ed., Cambridge University Press, (2001).
- [10] D. Hestenes, in *Clifford Algebras and their Applications in Mathematical Physics*, Reidel, Dordrecht/Boston, p.321-346 (1986).
- [11] S. Furui, Fermion Flavors in Quaternion Basis and Infrared QCD, Few Body Syst. 52 171 (2012), arXiv:1104.1225[hep-ph].
- [12] S. Furui, Triality selection rules of Octonion and Quantum Mechanics, arXiv:1409.3761.
- [13] S. Furui, Cartan's Supersymmetry and Weak and Electromagnetic Interations, Few Body Syst 56, 703.(2015), arXiv:1502.04524 v4.
- [14] S. Furui, Cartan's Supersymmetry and the Decay of a h^0 with the mass $m_{h^0} \simeq 11$ GeV to $\Upsilon(1S)\gamma$ and to $\Upsilon(2S)\gamma$, arXiv:1502.07011.
- [15] S. Furui, Cartan's Supersymmetry and the Decay of a $H^0(0^+)$, arXiv:1504.03795.
- [16] S. Furui, Cartan's Supersymmetry and the violation of CP symmetry, arXiv:1505.05830 v2.