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1. Introduction

It is well known that the canonical energy-momentum (EMT) obtained from Noether’s the-
orem is usually neither symmetric nor gauge invariant. In order to cure these “pathologies”, one
often “improves” the canonical EMT by adding a so-called superpotential term,i.e. a term of the
form ∂α f [αµ ]···(r) where the square brackets stand for antisymmetrization. The physical meaning
of this term is a redefinition of the local density of energy and momentum [1, 2] without affecting
the total (i.e. integrated) linear and angular momentum. Using an appropriate superpotential, Be-
linfante and Rosenfeld [3, 4, 5] obtained a new EMT which is both symmetric and gauge invariant.
We note in passing that the symmetry requirement for the EMT is essentially motivated by General
Relativity where torsion is assumed to vanish. This theory is purely classical and does not incor-
porate in a consistent manner the quantum concept of spin. Inmore general theories of gravitation
like Einstein-Cartan theory and metric-affine gauge theory, the no-torsion assumption is relaxed
leading to asymmetric EMTs and a natural coupling between gravitation and spin. The effects of
the latter are however extremely small and are expected to show up only under extreme conditions,
seee.g.[6, 7, 8] and references therein.

The early papers about the proton spin decomposition [9, 10,11] start with the Belinfante-
Rosenfeld tensor and introduce additional superpotentialterms to decompose the angular momen-
tum into spin and orbital contributions. On the one hand, textbooks likee.g. [12, 13] claim that
such a decomposition into spin and orbital parts is not possible in a gauge-invariant way for the
gauge field. On the other hand, it turns out that the photon spin and orbital angular momentum
(OAM) are routinely measured in Quantum ElectroDynamics, seee.g.[14] and references therein.
In Quantum ChromoDynamics (QCD), a gauge-invariant quantity called∆G has been measured in
polarized deep inelastic and proton-proton scatterings, see [15] for a recent analysis, and can be
interpreted in the light-front gauge as the gluon spin [9]. Motivated by these experimental facts,
Chenet al. [16] claimed in 2008 that the textbooks were wrong and proposed a formal gauge-
invariant decomposition of the photon and gluon angular momentum, triggering strong criticism
and a multiplication of theoretical papers, summarized in the recent reviews [17, 18]. The dust
having settled, it is now understood that the contradictionwith the textbook claim is only apparent
because the Chenet al. construction turned out to be intrinsically non-local [19,20, 21], whereas
textbooks implicitly refered to local quantities only.

It has actually been known for quite some time that gauge invariance can be restored by al-
lowing the quantities to be non-local [22, 23]. Although there are in principle infinitely many
ways of doing this, the experimental setup and the theoretical framework usually determine which
is the natural non-local gauge-invariant extension to use [24]. Typical examples of measurable
non-local quantities are parton distributions where the gauge invariance is ensured by a Wilson
line whose path is determined by the factorization theorems[25]. In particular, it has been shown
in Refs. [26, 27, 28] that the gauge-invariant form of the canonical OAM is naturally related to
so-called Generalized Transverse-Momentum dependent Distributions (GTMDs). These GTMDs
are extremely interesting objects since they provide the maximal information about the relativis-
tic phase-space (or Wigner) distribution of quarks and gluons inside the proton. Unfortunately,
apart possibly in the low-x regime, it is not known so far how to access these GTMDs experi-
mentally [29]. They are however very useful tools which can be accessed indirectly using re-
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alistic models, seee.g. [26, 30, 31, 32, 33, 34, 35], or lattice QCD in the infinite-momentum
limit [36, 37, 38, 39, 40, 41].

There are essentially two families of EMTs in a gauge theory [42, 43, 20] : kinetic (or mechan-
ical) and canonical. They all give the same total linear momentum, but attribute different momen-
tum densities to quarks and gluons. The parametrization of the symmetric kinetic (or Belinfante-
Rosenfeld) form of the EMT has been given in [10] and further discussed in [44]. The extension
to asymmetric kinetic EMTs has been discussed in [11], but the correct parametrization in the off-
forward case has been given in [45]. Finally, the first complete parametrization of the general EMT
with non-locality along the light-front (LF) directionn has been given in [46].

2. The gauge-invariant linear and angular momentum tensors

Most of the decompositions of the EMT found in the literaturecan be expressed as combina-
tions of the following five gauge-invariant tensors

Tµν
1 (r) = ψ(r)γµ i

2

↔
D νψ(r),

Tµν
2 (r) =−2Tr[Gµα(r)Gν

α(r)]+gµν 1
2Tr

[

Gαβ (r)Gαβ (r)
]

,

Tµν
3 (r) =−ψ(r)γµgAν

phys(r)ψ(r),

Tµν
4 (r) = 1

4 ε µναβ∂α
[

ψ(r)γβ γ5ψ(r)
]

,

Tµν
5 (r) =−2∂αTr

[

Gµα(r)Aν
phys(r)

]

,

(2.1)

whereε0123= +1 and i
2

↔
D µ = i

2

↔

∂ µ +gAµ is the hermitian covariant derivative with
↔

∂ µ =
→

∂ µ −
←

∂ µ . In particular,Tµν
1 and Tµν

2 correspond to the kinetic form of the quark and gluon EMTs,
respectively, whereasTµν

1 +Tµν
3 andTµν

2 −Tµν
3 +Tµν

5 correspond to their canonical form. The
various EMTs can be related to each other [17, 46] using the superpotentialsTµν

4 andTµν
5 , and the

QCD equations of motion

ψ(r)γ [µ i
↔
D ν ]ψ(r) =−ε µναβ∂α

[

ψ(r)γβ γ5ψ(r)
]

,

2
[

DαGαβ (r)
]c

c′
=−gψc′(r)γ

β ψc(r),
(2.2)

wherec,c′ are color indices in the fundamental representation andDµ = ∂µ − ig[Aµ , ] is the
adjoint covariant derivative. Note that because of the firstidentity in Eq. (2.2), we can write
Tµν

4 (r) =−1
2 T [µν ]

1 (r) and therefore discard the tensorTµν
4 (r) in the following discussions.

The gauge-invariant canonical EMT requires the introduction of a pure-gauge field

Apure
µ (r)≡ i

g W (r)∂µW
−1(r), (2.3)

whereW (r) (calledUpure(r) in [20]) is some phase factor which cannot be related in a local way
to the original gauge fieldAµ(r) and which transforms asW (r) 7→U(r)W (r) under gauge trans-
formations. The “physical” gluon field is then defined as

Aphys
µ (r)≡ Aµ(r)−Apure

µ (r). (2.4)
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In the gauge whereW (r) =1, the gauge-invariant canonical decomposition formally reduces to the
Jaffe-Manohar decomposition, and can therefore be considered as a gauge-invariant extension of
the latter [47, 20, 48, 17]. The phase factorW (r) is in principle not unique [20, 17]. Leaving at this
stage the phase factor unspecified allows us to consider at once wholeclassesof decompositions
differing simply by the precise form of the non-local phase factor.

3. Parametrization

In practice, since we want to relate the matrix elements of the gauge-invariant EMT to measur-
able parton distributions, we identify the non-local phasefactorW (r) with a Wilson lineWn(r, r0)

connecting a fixed reference pointr0 (usually taken at infinity) to the point of interestr. Accord-
ing to the factorization theorems [25], these Wilson lines run essentially in a straight line along
the LF directionn to some intermediate pointrn = r ±∞n, and then in the transverse direction
to r0. In some sense, these Wilson lines can be interpreted as the background gluon field gen-
erated by the hard part of the scattering. The Wilson line associated with the first part of the
pathWn(r, rn) = P

[

e−ig
∫ ±∞

0 n·A(r+λn)dλ
]

makes the LF gaugen ·A = 0 special, since in this gauge

Wn(r, rn) = 1. The transverse Wilson lineWn(rn, r0) is associated with the residual gauge freedom
and can be set to1 using appropriate boundary conditions for the gauge field [21, 28].

The matrix elements of the generic LF EMT depend in principleon n. More precisely, for a
target of massM they depend on the four-vectorN = M2 n

P·n which is invariant under rescaling of the
lightlike four-vectorn 7→ αn. They also depend on the average target momentumP= (p′+ p)/2,
the momentum transfer∆ = p′− p, and the parameterη = ±1 indicating whether the LF Wilson
lines are future-pointing (η = +1) or past-pointing (η = −1). SinceP ·∆ = 0 andM2 = P ·N =

P2 + ∆2/4, the scalar functions parametrizing the generic LF EMT arefunctions of two scalar
variablesξ = −(∆ ·N)/2(P·N) andt = ∆2. Moreover, they also depend on the parameterη , and
are therefore complex-valued just like the GTMDs [29, 49].

Using the techniques from the Appendix A of Ref. [29], the generic LF EMT for a spin-
1/2 target can be parametrized as [46]〈p′,S′|Tµν

a (0)|p,S〉 = u(p′,S′)Γµν
a (P,∆,N;η)u(p,S) with

a= 1, · · · ,5 and whereSandS′ are the initial and final target polarization four-vectors satisfying
p·S= p′ ·S′ = 0 andS2 = S′2 =−M2, andΓµν

a stands for

Γµν
a = MgµνAa

1+
PµPν

M
Aa

2+
∆µ∆ν

M
Aa

3+
Pµ iσ ν∆

2M
Aa

4+
Pν iσ µ∆

2M
Aa

5

+
NµNν

M
Ba

1+
PµNν

M
Ba

2+
PνNµ

M
Ba

3+
Nµ iσ ν∆

2M
Ba

4+
Nν iσ µ∆

2M
Ba

5+
∆µ iσ νN

2M
Ba

6+
∆ν iσ µN

2M
Ba

7

+

[

MgµνBa
8+

PµPν

M
Ba

9+
∆µ∆ν

M
Ba

10+
NµNν

M
Ba

11+
PµNν

M
Ba

12+
PνNµ

M
Ba

13

]

iσN∆

2M2

+
Pµ∆ν

M
Ba

14+
Pν∆µ

M
Ba

15+
∆µNν

M
Ba

16+
∆νNµ

M
Ba

17+
M
2

iσ µν Ba
18+

∆ν iσ µ∆

2M
Ba

19

+
Pµ iσ νN

2M
Ba

20+
Pν iσ µN

2M
Ba

21+
Nµ iσ νN

2M
Ba

22+
Nν iσ µN

2M
Ba

23

+

[

Pµ∆ν

M
Ba

24+
Pν∆µ

M
Ba

25+
∆µNν

M
Ba

26+
∆νNµ

M
Ba

27

]

iσN∆

2M2 . (3.1)
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For convenience, the notationiσ µb≡ iσ µαbα has been used and the factors ofi have been chosen
such that the real part of the scalar functions isη-even whereas the imaginary part isη-odd

Xa
j (ξ , t;η) = Xe,a

j (ξ , t)+ iη Xo,a
j (ξ , t) (3.2)

as a consequence of time-reversal symmetry. The hermiticity constraint implies that the real part
of Ba

j with j ≥ 14 isξ -odd and the imaginary part isξ -even. For the other functions, the real part
is ξ -even and the imaginary part isξ -odd.

Among all the possible structures allowed by Lorentz and discrete space-time symmetries,
only 32 turned out to be independent, see Appendix A of [46]. Interestingly, this number can
alternatively be obtained from the following naive simple counting : the generic EMTTµν

a has
4× 4 = 16 components; the target state polarizations±S and±S′ bring another factor of 2×
2 = 4, but parity symmetry reduces the number of independent polarization configurations by a
factor 2, leading to a total of 32 independent complex-valued amplitudes. These 32 independent
amplitudes are in correspondence with 32 independent Diracstructures, a particular set being given
by Eq. (3.1).

The EMTsTµν
1 and Tµν

2 are local and therefore do not depend onN or η . All the scalar
functions must then vanish except the functionsAe,a

j (0, t) with a= 1,2 and j = 1, · · · ,5. These are
linearly related to the standard energy-momentum form factors [10, 45, 17] as follows

Aq(t) = Ae,1
2 (0, t), AG(t) = Ae,2

2 (0, t),

Bq(t) = Ae,1
4 (0, t)+Ae,1

5 (0, t)−Ae,1
2 (0, t), BG(t) = Ae,2

4 (0, t)+Ae,2
5 (0, t)−Ae,2

2 (0, t),

Cq(t) = Ae,1
3 (0, t), CG(t) = Ae,2

3 (0, t),

C̄q(t) = Ae,1
1 (0, t)+ t

M2 Ae,1
3 (0, t), C̄G(t) = Ae,2

1 (0, t)+ t
M2 Ae,2

3 (0, t),

Dq(t) = Ae,1
4 (0, t)−Ae,1

5 (0, t), 0= Ae,2
4 (0, t)−Ae,2

5 (0, t).

(3.3)

The first four form factors parametrize the symmetric part ofthe local gauge-invariant EMT,
whereas the last one parametrizes its antisymmetric part.

4. Linear and angular momentum constraints

The parametrization (3.1) is only constrained by space-time symmetries. Conservation of total
linear and angular momentum lead to further constraints on the scalar functions. More details about
the various additional constraints can be found in [46].

Contracting the EMT with 1
2M2 Nµ and considering the forward limit∆→ 0, gives the average

four-momentum in the LF form of dynamics

〈pν
a〉 ≡

1
2M2 〈P,S|T

Nν
a (0)|P,S〉= PνAe,a

2 +Nν(Ae,a
1 +Be,a

2 )+δ a3 η
2

ενS
T (Bo,3

18 −Bo,3
20 ). (4.1)

Interestingly, the last term in Eq. (4.1) is naiveT-odd and originates from the potential EMT
Tµν

3 . It can be interpreted as the spin-dependent contribution to the momentum arising from
initial and/or final-state interactions, seee.g. [50] and references therein. Because of the struc-
ture ενS

T ≡ εν µαβ Sµnα n̄β with n̄ the dual lightlike four-vector satisfyingn · n̄ = 1 and such that
Pµ = (P · n)n̄µ + (P · n̄)nµ , this naiveT-odd contribution is transverse and requires a transverse

5
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target polarization. Since the total four-momentum is〈pν〉 = Pν , we recover from summing over
all partons the well-known momentum constraints

∑
a=1,2

Ae,a
1 (0,0) = ∑

a=q,G

C̄a(0) = 0,

∑
a=1,2

Ae,a
2 (0,0) = ∑

a=q,G

Aa(0) = 1.
(4.2)

Having a complete parametrization of the generic LF EMT, we can easily compute the matrix
elements of the corresponding OAM tensorLµνρ

a (r) = rνTµρ
a (r)− rρ Tµν

a (r). Because of the ex-
plicit factors of positionr, the matrix elements of the generic LF OAM tensor need to be handled
with care [45, 17]. Focusing on the longitudinal component of OAM, we found

〈La
L〉 ≡

εTαβ

2M2

[

i
∂

∂∆α
〈p′,S′|TNβ

a (0)|p,S〉

]

∆=0
=

S·N
M2 Ae,a

4 (0,0). (4.3)

For a longitudinally polarized target,S·N = M2 and soAe,a
4 (0,0) can be interpreted as the av-

erage fraction of target longitudinal angular momentum carried by the OAM associated with the
EMT Tµν

a in the LF form of dynamics. Similarly, the quark and gluon spin contributionsSµνρ
1 =

1
2 ε µνρσ ψγβ γ5ψ andSµνρ

2 = −2Tr
[

Gµ [νAρ ]
phys

]

can be expressed in terms ofLµνρ
4 andLµνρ

5 , re-
spectively. We then found for the longitudinal spin contributions

〈Sq
L〉 ≡

1
2M2 〈P,S|

1
2 εTαβ SNαβ

1 (0)|P,S〉=−
1
2

[

Ae,1
4 (0,0)−Ae,1

5 (0,0)
] S·N

M2 ,

〈SG
L 〉 ≡

1
2M2 〈P,S|

1
2 εTαβ SNαβ

2 (0)|P,S〉=−
S·N
M2 Ae,5

4 (0,0),
(4.4)

where Eq. (2.2) has been used to expressLµνρ
4 in terms ofTµν

1 . The scalars−1
2[A

e,1
4 (0,0)−

Ae,1
5 (0,0)] =−1

2Dq(0) and−Ae,5
4 (0,0) can therefore be interpreted as the average fraction of target

longitudinal angular momentum carried by the spin of quarksand gluons, respectively. Adding the
spin and OAM contributions, we naturally recover the Ji relation for total angular momentum [10]

〈Jq
L〉= 〈S

q
L〉+ 〈L

q
L〉=

1
2

[

Ae,1
4 (0,0)+Ae,1

5 (0,0)
]

S·N
M2 = 1

2 [Aq(0)+Bq(0)] S·N
M2 ,

〈JG
L 〉= 〈S

G
L 〉+ 〈L

G
L 〉=

1
2

[

Ae,2
4 (0,0)+Ae,2

5 (0,0)
]

S·N
M2 = 1

2 [AG(0)+BG(0)] S·N
M2 .

(4.5)

Finally, since the total angular momentum is 1/2, we naturally recover from Eqs. (4.2) and (4.5)
the angular momentum constraint

∑
a=1,2

[Ae,a
4 (0,0)+Ae,a

5 (0,0)−Ae,a
2 (0,0)] = ∑

a=q,G

Ba(0) = 0 (4.6)

also known as the anomalous gravitomagnetic moment sum rule[51, 52].

5. Link with measurable parton distributions

The scalar functions parametrizing the generic LF EMT can berelated to measurable par-
ton dsitributions, likee.g. Generalized Parton Distributions (GPDs) accessed in exclusive scatter-
ings [53] and Transverse-Momentum dependent Distributions (TMDs) accessed in semi-inclusive

6
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scatterings [25]. Both kinds of distributions can be seen asparticular projections of the GTMD
correlator [29, 54, 49]

Fµ
S′S(P,x,∆,N) =

∫

d2k⊥Wµ
S′S(P,x,

~k⊥,∆,N;η),

Φµ
S′S(P,x,

~k⊥,N;η) =Wµ
S′S(P,x,

~k⊥,0,N;η).
(5.1)

The matrix elements of the EMT we are interested in can also easily be expressed in terms of these
GTMDs [21] and hence related to GPD and TMD correlators

〈p′,S′|Tµν(0)|p,S〉 =
∫

d4kkν Wµ
S′S. (5.2)

The detailed relations between the EMT scalar functions andtwo-parton GPDs and TMDs of any
twist can be found in [46].

Among the interesting results, let us just mention that we naturally recover the Burkardt sum
rule [55, 56]

∑
a=q,G

∫

dxd2kT
k2

T
2M2 f⊥a

1T (x,k2
T) = 0, (5.3)

and derived three new similar sum rules for high-twist distributions

∑
a=q,G

∫

dxd2kT
k2

T
2M2 f⊥a(x,k2

T) = 0,

∑
a=q,G

∫

dxd2kT
k2

T
2M2 f⊥a

L (x,k2
T) = 0,

∑
a=q,G

∫

dxd2kT
k2

T
2M2 f⊥a

3T (x,k2
T) = 0,

(5.4)

all of them expressing the fact that the total transverse momentum (w.r.t. the target momentum) has
to vanish. Higher-twist TMDs are much harder to test experimentally, but it would be very inter-
esting to test these new sum rules using phenomenological models, Lattice QCD and perturbative
QCD.

6. Conclusions

A gauge-invariant canonical energy-momentum tensor can bedefined once one relaxes the
assumption of strict locality without harming causality. This indicates that the canonical energy-
momentum tensorcanbe considered as a physical object anda priori measured experimentallyvia
particular moments of parton distributions extracted fromnumerous physical processes.

We presented here the complete parametrization for the matrix elements of the generic light-
front gauge-invariant energy-momentum tensor and discussed the constraints of linear and angular
momentum conservation. We showed that this energy-momentum tensor can be related to moments
of the parton distributions in momentum space. Among the interesting results, we recovered the
Burkardt sum rule and derived three new sum rules involving higher-twist distributions, all express-
ing basically the conservation of transverse momentum. We expect highly valuable insights into
these matters in a near future coming from new experimental data obtained in existing and future
facilities, and explicit investigations using covariant models, Lattice QCD and perturbative QCD.
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