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1. Introduction

Hard exclusive processes involving energetic pions in the final state are sensitive to the mo-
mentum fraction distribution of the valence quarks at small transverse separations, usually called
the pion distribution amplitude (DA). The DA is defined [1, 2, 3] as the matrix element of a nonlocal
light-ray quark-antiquark operator. For example, for a positively charged pion

〈0|d̄(z2n)/nγ5[z2n,z1n]u(z1n)|π(p)〉 = i fπ(p ·n)
∫ 1

0
dxe−i(z1x+z2(1−x))p·n

φπ(x,µ2) , (1.1)

where pµ is the pion momentum, nµ is a light-like vector, n2 = 0, z1,2 are real numbers, [z2n,z1n] is
the Wilson line connecting the quark and the antiquark fields and fπ = 132MeV is the usual pion
decay constant. The DA φπ(x,µ2) is scale-dependent, which is indicated by the argument µ2. The
definition in (1.1) implies the normalization condition∫ 1

0
dxφπ(x,µ2) = 1 . (1.2)

The physical interpretation of the variable x is that the u-quark carries the fraction x of the pion
momentum, so that 1− x is the momentum fraction carried by the d̄-antiquark. Neglecting isospin
breaking effects and electromagnetic corrections the pion DA is symmetric under the interchange
x↔ 1− x:

φπ(x,µ2) = φπ(1− x,µ2) . (1.3)

Moments of the DA, i.e. integrals with extra powers of the momentum fraction, are related to matrix
elements of local operators and can be calculated on the lattice. The symmetry in (1.3) implies that
only the even moments involving the momentum fraction difference ξ = x− (1−x) = 2x−1 carry
nontrivial physical information. Restricting to second order polynomials, usually one considers
two types of moments:

〈ξ 2〉(µ2) =
∫ 1

0
dx(2x−1)2

φπ(x,µ2) ,

18
7

a2(µ
2) = 〈C3/2

2 (ξ )〉(µ2) =
∫ 1

0
dxC3/2

2 (2x−1)φπ(x,µ2) , (1.4)

where C3/2
2 (ξ ) = (3/2)[5ξ 2−1] is a Gegenbauer polynomial. The advantage of using Gegenbauer

moments is that the corresponding operators are multiplicatively renormalizable (in one loop) so
that their matrix elements at a certain reference scale are the true nonperturbative parameters that
can be determined in lattice calculations. The parameters 〈ξ 2〉(µ2) and a2(µ

2) in continuum theory
are connected by a simple linear relation

a2 =
7
12

[
5〈ξ 2〉−1

]
, 〈ξ 2〉= 1

5
+

12
35

a2 , (1.5)

so that in principle they contain the same information. It is widely expected, however, that the
numerical value of 〈ξ 2〉 is not far from 1/5 corresponding to the asymptotic pion DA φ as

π (x) =
6x(1− x) at µ2 → ∞. Hence, if 〈ξ 2〉(µ0) is determined with a given accuracy at some reference
scale µ0 by a certain nonperturbative method, and a2(µ0) is then obtained from the above relation,
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the error on a2 is strongly amplified by the subtraction of the asymptotic contribution. The error on
a2 is the one that is relevant as it propagates through the renormalization group equations. In other
words, although using a2 as a nonperturbative parameter instead of 〈ξ 2〉 for the pion DA at a low
reference scale φπ(x,µ2

0 ) is just a rewriting, this choice is much more adequate in order to determine
the pion DA at high scales, φπ(x,Q2), Q� µ0, which enters QCD factorization theorems. Another
issue to consider is that the relation in Eq. (1.5) can be broken by lattice artifacts, see below.

2. Lattice formulation

We consider [4] the following (bare) operators with two covariant derivatives as our operator
basis:

O−ρµν(x) = d̄(x)
[←
D(µ

←
Dν −2

←
D(µ

→
Dν +

→
D(µ

→
Dν

]
γρ)γ5 u(x) ,

O+
ρµν(x) = d̄(x)

[←
D(µ

←
Dν +2

←
D(µ

→
Dν +

→
D(µ

→
Dν

]
γρ)γ5 u(x) . (2.1)

Here Dµ is the covariant derivative and (. . .) denotes the symmetrization of all enclosed Lorentz
indices and the subtraction of traces. On the lattice the covariant derivatives will be replaced by
their discretized versions.

The operator O−ρµν can be written in a conventional shorthand notation as

O−ρµν(x) = d̄(x)
↔
D(µ

↔
Dνγρ)γ5 u(x) (2.2)

and its matrix element between the vacuum and the pion state is proportional to the bare lattice
value of 〈(x− (1− x))2〉 = 〈ξ 2〉. In the continuum, the operator O+

ρµν is the second derivative of
the axial-vector current:

O+
ρµν(x) = ∂(µ∂νOρ)(x) with Oρ(x) = d̄(x)γργ5u(x) . (2.3)

Sandwiched between vacuum and the pion state, this relation guaranties energy conservation, i.e.
the bare value of 〈(x+1−x)2〉= 〈12〉= 1. However, this identity is violated on the lattice because
of discretization errors in the derivatives. The distinction between O+

ρµν and ∂(µ∂νOρ) for finite
lattice spacing appears to be numerically important.

The corresponding renormalized (e.g., in the MS scheme) axial-vector current is then given by

OMS
ρ (x) = ZAOρ(x) (2.4)

with ZA 6= 1 on the lattice. The operators O−ρµν and O+
ρµν mix under renormalization even in the

continuum. On the lattice the continuous rotational O(4) symmetry of Euclidean space is broken
and reduced to the discrete H(4) symmetry of the hypercubic lattice. This symmetry breaking
can introduce additional mixing, in particular involving operators of lower dimension such that
the mixing coefficients are proportional to powers of 1/a, which complicates the renormalization
procedure significantly. The trick is to choose the lattice operators such that they belong to a
particular irreducible representation of H(4) that does not involve further operators, in particular
of lower dimension. In the present case there is one such choice, corresponding to using operators
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O±ρµν with all three indices different. In this calculation we restrict ourselves to the operators (see,
e.g., [5, 6])

O±4 jk , j 6= k ∈ {1,2,3} . (2.5)

The renormalized operators are then given by

OMS−
4 jk (x) = Z11O

−
4 jk(x)+Z12O

+
4 jk(x) , OMS+

4 jk (x) = Z22O
+
4 jk(x) . (2.6)

Note that due to the discretization artifacts in the derivatives one cannot expect Z22 to be equal to
ZA. The physical quantities of interest are given by matrix elements of the renormalized operators,
e.g. (in Euclidean notation)

〈0|OMS
4 (0)|π(p)〉=−iEπ(p) fπ ,

〈0|OMS
j (0)|π(p)〉=−p j fπ .

〈0|OMS−
4 jk (0)|π(p)〉= i fπ〈ξ 2〉Eπ(p)p j pk , (2.7)

where p j are the components of the three-vector p of the pion spatial momentum and Eπ(p) is the
corresponding energy.

The calculation of 〈ξ 2〉MS and aMS
2 involves two steps: computation of the bare matrix el-

ements and evaluation of the renormalization factors. We extract the bare matrix elements from
two-point correlation functions of the operators O±ρµν and Oρ with suitable interpolating fields
J(x) for the π-mesons. For the latter we consider the two possibilities

J5(x) = ū(x)γ5d(x) , J45(x) = ū(x)γ4γ5d(x) (2.8)

with smeared quark fields. The details of our smearing algorithm can be found in [4]. Let

CA
ρ (t,p) = a3

∑
x

e−ip·x〈Oρ(x, t)JA(0)〉,

C±;A
ρµν(t,p) = a3

∑
x

e−ip·x〈O±ρµν(x, t)JA(0)〉, (2.9)

where A = 5 or A = 45. The summation goes over the set of spatial lattice points x for a given
Euclidean time t.

For sufficiently large t, where the correlation functions are saturated by the contribution of the
lowest-mass pion state, we expect that, e.g.,

C±;A
ρµν(t,p) = 〈0|O±ρµν(0)|π(p)〉〈π(p)|JA(0)|0〉

1
2E

[
e−Et + τOτJe−E(T−t)

]
. (2.10)

Here E ≡ Eπ(p), T is the temporal extent of our lattice, and the τ-factors take into account trans-
formation properties of the correlation functions under time reversal. One finds τJ5 =−1, τJ45 = 1,
τO = 1 for the operators O±4 jk, O4 and τO =−1 for O j, where j,k = 1,2,3. We utilize these sym-
metries in order to reduce the statistical fluctuations of our raw data, i.e., we average over the two
corresponding times t and T − t with the appropriate sign factors.

From the ratios

R±;A
ρµν ;σ =

C±;A
ρµν(t,p)
CA

σ (t,p)
(2.11)
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we can extract the required bare matrix elements 〈0|O±ρµν(0)|π(p)〉, which carry the information
on the second moment of the pion DA.

A calculation of matrix elements of O±4 jk requires two nonvanishing spatial components of the
momentum. We choose them as small as possible, p = 2π/L, where L is the spatial extent of our
lattice, and average over the possible directions, e.g., p = (p, p,0), p = (p,−p,0), p = (−p, p,0),
p = (−p,−p,0) for j = 1, k = 2. If the correlation functions are dominated by the single-pion
states, the time-dependent factors in the ratios of correlation functions cancel and we obtain, e.g.,
for the operator O±412 and the momentum p = (p, p,0)

R±;A
412;4 =−

(
2π

L

)2

R± , (2.12)

where the constants R± are related to the bare lattice values of the second moment of the pion DA
through

〈ξ 2〉bare = R−, abare
2 =

7
12
(
5R−−R+

)
. (2.13)

They should not depend on the choice of the interpolating field JA. Note that R+ /=1 and therefore
for bare quantities

abare
2 /=

7
12
(
5〈ξ 2〉bare−1

)
. (2.14)

For the renormalized moments in the MS scheme we obtain

〈ξ 2〉MS = ζ11R−+ζ12R+ , aMS
2 =

7
12

[
5ζ11R−+

(
5ζ12−ζ22

)
R+
]
, (2.15)

where
ζ11 =

Z11

ZA
, ζ12 =

Z12

ZA
, ζ22 =

Z22

ZA
(2.16)

are ratios of renormalization constants defined in the next section.
In the continuum limit we expect that

Z22〈0|O+
4 jk(0)|π(p)〉=−ZA p j pk〈0|O4(0)|π(p)〉 = ip j pkEπ(p) fπ . (2.17)

Hence the quantity

〈12〉MS :=
Z22

ZA

〈0|O+
4 jk(0)|π(p)〉

(−p j pk)〈0|O4(0)|π(p)〉
= ζ22R+ (2.18)

should approach unity as the lattice spacing tends to zero. In this case the relation (1.5) is recovered
whereas for finite lattice spacing it follows from (2.15)

aMS
2 =

7
12
(
5〈ξ 2〉MS−〈12〉MS) . (2.19)

E.g. for a2 ∼ 5 · 10−3 fm2 corresponding to β = 5.29, where most of our data are collected, we
obtain at mπ = 294MeV on a 323×64-lattice 〈12〉MS

a∼0.07 fm = 0.9402(66)(54) . The deviation from
unity is only 6%, however, it results in a 25−30% increase in the value of aMS

2 at the same lattice
spacing, calculated using Eq. (2.19) instead of the continuum relation in Eq. (1.5). Approaching
the continuum limit there are two possibilities: Either 〈ξ 2〉 is measured on the lattice, the result
extrapolated to zero lattice spacing, and at the final step a2 is obtained using the relation (1.5), or a2

is calculated directly on the lattice and then extrapolated to the continuum limit. The first approach
was used in Refs. [5, 6] whereas in this work we advocate using the second method.

5
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3. Renormalization constants

Bare matrix elements have to be renormalized and converted to the MS scheme which is used
in the perturbative calculations. The first step is to choose lattice operators such that they belong
to some irreducible, unitary representation of the symmetry group H(4). In this way one can
ensure that they do not mix with a larger class of operators, in particular with the operators of
lower dimension. Let O

(m)
i (x) (i = 1,2, . . . ,d, m = 1,2, . . . ,M) be such a multiplet, see [5, 6, 4]

for a concrete choice Call the unrenormalized, but (lattice-)regularized vertex functions (in the
Landau gauge) V (m)

i (p,q), where p and q are the external quark momenta. The corresponding
renormalized (in the MS scheme) vertex functions are denoted by V̄ (m)

i (p,q). The dependence of
V̄ (m)

i on the renormalization scale µ is suppressed for brevity. Note that V (m)
i carries Dirac indices

and is therefore to be considered as a 4×4-matrix. The color indices have been averaged over.
We choose a symmetric subtraction point

p =
µ√
2
(1,1,0,0) , q =

µ√
2
(0,1,1,0) (3.1)

such that p2 = q2 = (p−q)2 = µ2. As our renormalization condition we take (in the chiral limit)

d

∑
i=1

tr
(

B̂(m)
i B̂(m′)†

i

)
= Z−1

q

M

∑
m′′=1

Ẑmm′′
d

∑
i=1

tr
(

V (m′′)
i B̂(m′)†

i

)
, (3.2)

where B̂(m)
i is the lattice Born term corresponding to V (m)

i . The wave function renormalization con-
stant of the quark fields Zq is determined from the quark propagator, as usual [7], and subsequently
converted to the MS scheme. Using the lattice Born term instead of the continuum Born term and
proceeding analogously in the calculation of Zq ensures that Ẑ is the unit matrix in the free case.

The renormalization matrix Ẑ leads from the bare operators on the lattice to renormalized
operators in our SMOM scheme. The matrix Z transforming the bare operators into renormalized
operators in the MS scheme is then given by Z =CẐ, where the matrix C is defined as

M

∑
m′′=1

d

∑
i=1

Cmm′′ tr
(

B(m′′)
i B(m′)†

i

)
=

d

∑
i=1

tr
(

V̄ (m)
i B(m′)†

i

)
. (3.3)

Here V̄ (m)
i is the renormalized vertex function in the MS scheme and B(m)

i is the continuum Born
term such that the conversion matrix C is completely determined from a continuum calculation [8,
9].

The calculation of the vertex functions with the help of momentum sources is straightforward.
Partially twisted boundary conditions applied to the quark propagators allow us to vary the renor-
malization scale µ independently of the lattice size. Due to the rather small quark masses the
subsequent chiral extrapolation appears to be quite safe.

The renormalization scale µ should, ideally, satisfy the conditions 1/L2�Λ2
QCD� µ2� 1/a2

for a lattice with lattice spacing a and extent L. In practice the Z-values at any given scale suf-
fer from discretization artifacts as well as from truncation errors of the perturbative expansions.
Therefore we try to exploit as much of the available nonperturbative information as possible by
performing a joint fit of the µ-dependence of the chirally extrapolated renormalization matrices

6



P
o
S
(
Q
C
D
E
V
2
0
1
5
)
0
0
9

Pion Distribution Amplitude V.M. Braun

m
2
π (GeV2)

0 0.5 1 1.5

R
− av

0.1

0.12

0.14

0.16

0.18

0.2

0.22  β = 5.2

 β = 5.25

 β = 5.29

 β = 5.4

m
2
π (GeV2)

0 0.5 1 1.5

R
− av

0.1

0.12

0.14

0.16

0.18

0.2

0.22  β = 5.2

 β = 5.25

 β = 5.29

 β = 5.4

Figure 1: Bare results for R−av from this work (filled symbols) and from [5] (open symbols) for the two
interpolators J45 (left panel) and J5 (right panel).

Z(a,µ)MC for our three β -values β = 5.20, 5.29 and 5.40. This is done using all available per-
turbative information and adding terms ∼ (aµ)2k, k = 1,2,3 as a plausible ansatz for an effective
description of lattice artifacts.

The statistical errors of the data are quite small, in particular for larger scales, so that the sys-
tematic uncertainties prove to be more important. The largest uncertainty comes from the variation
of the number of loops in the conversion factors to the MS scheme: Working with the 1-loop ver-
tex functions increases the result for ζ11 by about 5%, and the modulus of the mixing coefficient
ζ12 increases even by about 17%. We take two-loop results for the central values and half of the
difference between the two-loop and the one-loop matching as the corresponding uncertainty. This
should amount to a rather conservative error estimate.

In the previous paper [5] the renormalization and mixing factors were evaluated in a mixed
perturbative-nonperturbative approach, based on the representation of O+

ρµν as the second deriva-
tive of the axial-vector current (see Eq. (2.3)). Repeating this calculation in a completely nonper-
turbative setting we find that the overall renormalization factor corresponding to ζ11 agrees within
a few percent. The nonperturbative mixing coefficient, on the other hand, has the same (negative)
sign as its perturbatively computed counterpart, but its modulus is up to one order of magnitude
larger. This observation underlines the necessity of nonperturbative renormalization, at least for
the presently reachable β -values.

4. Results

Bare lattice results for R−av = 〈ξ 2〉bare for the two interpolating operators J45 and J5 are com-
pared with the earlier study [5] in Fig. 1. Note that our data are consistent with the measurements
in [5], but extend to considerably smaller pion masses all the way down to the physical value. Nev-
ertheless, we will see that taking into account Eq. (2.14) and using the nonperturbatively computed
value of mixing coefficient ζ12 leads to a significant shift in the final numbers.

The bare data are renormalized using the nonperturbatively computed renormalization factors
ζ11, ζ12, ζ22, after which the extrapolation to the physical pion mass, infinite volume, and eventually

7
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Figure 2: 〈12〉MS [left panel] and aMS
2 [right panel] as a function of the lattice spacing a for ensembles with

mπ L∼ 3.4−3.8 and mπ ∼ 280MeV. Only statistical errors are shown.

to the continuum has to be performed. The finite volume effects do not seem to be significant so
we do not discuss them here. The finite lattice spacing effects for 〈12〉MS and aMS

2 are illustrated
in Fig. 2. For the former, the results can very nicely be extrapolated to the continuum limit a = 0,
reproducing the expected result. For the latter, however, large statistical fluctuations do not allow
for an extrapolation. Although our data may show a tendency for aMS

2 (and 〈ξ MS
2 〉) decreasing in

the continuum limit, we do not consider this evidence as sufficient. By this reason we choose to
present our final results for finite lattice spacing leaving the continuum extrapolation for a future
study.

It is known [10] that 〈ξ 2〉MS and aMS
2 do not contain chiral logarithms, at least to one-loop

order. Therefore we assume a linear dependence on m2
π for the extrapolation in the pion mass to

the physical value. Since the ensemble with the lightest pion in our simulations is already very
close to the physical point, the chiral extrapolation should be reliable. As our lattice spacings do
not vary that much, and a proper continuum extrapolation of 〈ξ 2〉MS and aMS

2 cannot be attempted,
we average the results from all lattice spacings but take into account only the data for the largest
volume. The resulting extrapolations of aMS

2 and 〈ξ 2〉MS to the physical pion mass are plotted in
Fig. 3.

5. Summary

In this work we extend the lattice study [5] of the second moment of the pion DA by making
use of a larger set of lattices with different volumes, lattice spacings and pion masses down to mπ ∼
150MeV and implementing several technical improvements. We employ the variational approach
with two and three interpolators (not discussed above) to improve the signal from the pion state.
The renormalization of the lattice data is performed nonperturbatively utilizing a version of the RI’-
SMOM scheme. For the first time we include a nonperturbative calculation of the renormalization
factor corresponding to the mixing with total derivatives, which proves to have a significant effect.
Our main result is

a2 = 0.1364(154)(145)(?) (5.1)

8
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Figure 3: Extrapolation to the physical pion mass for aMS
2 [left panel] and 〈ξ 2〉MS [right panel]. The open

triangle represents the extrapolated value. Only statistical errors are shown.

for the second Gegenbauer moment of the pion DA, and

〈ξ 2〉= 0.2361(41)(39)(?) . (5.2)

They can be compared with the earlier lattice calculations

〈ξ 2〉MS = 0.269(39) , aMS
2 = 0.201(114) , [5]

〈ξ 2〉MS = 0.28(1)(2) , aMS
2 = 0.233(29)(58) . [6] (5.3)

All numbers refer to the scale µ = 2GeV in the MS scheme. The first error in (5.1) and (5.2) com-
bines the statistical uncertainty and the uncertainty of the chiral extrapolation. The second error is
the estimated uncertainty contributed by the nonperturbative determination of the renormalization
and mixing factors. Our lattice data are collected for the lattice spacing a = 0.06− 0.08fm, and
this range is not large enough to ensure a reliable continuum extrapolation. The corresponding
remaining uncertainty is indicated as (?). It has to be addressed in a future study.

As a final remark, we note that the somewhat smaller value of aMS
2 obtained in this work seems

to be favored by the phenomenological studies of form factors in the framework of light-cone sum
rules [11], see, e.g., Refs. [12, 13, 14, 15, 16]. Comparable numbers (〈ξ 2〉 = 0.25, a2 = 0.15)
have also been obtained recently in the DSE approach in the calculation using DCSB-improved
kernels [17].
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