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We discuss two applications of the Virtuality Distribution Amplitudes (VDA) formalism devel-
oped in our recent papers. We start with an overview of the main properties of the pion distri-
bution amplitude emphasizing the quantitative measures of its width, and possibility to access
them through the pion transition form factor studies. We formulate the basic concepts of the VDA
approach and introduce the pion transverse momentum distribution amplitude (TMDA) which
plays, in a covariant Lagrangian formulation, a role similar to that of the pion wave function in
the 3-dimensional Hamiltonian light-front approach. We propose simple factorized models for
soft TMDAs, and use them to describe existing data on the pion transition form factor, thus fixing
the scale determining the size of the transverse-momentum effects. Finally, we apply the VDA
approach to the one-gluon exchange contribution for the pion electromagnetic form factor. We
observe a very late Q2 & 20 GeV2 onset of transition to the asymptotic pQCD predictions and
show that in the Q2 . 10 GeV2 region there is essentially no sensitivity to the shape of the pion
distribution amplitude. Furthermore, the magnitude of the one-gluon exchange contribution in
this region is estimated to be an order of magnitude below the Jefferson Lab data, thus leaving the
Feynman mechanism as the only one relevant to the pion electromagnetic form factor behavior
for accessible Q2.
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1. Introduction

Adding transverse momentum degrees of freedom is a popular subject in the theory of hard
reactions. In reality, such an adding is not always necessary. We mean that when the standard
(“collinear") perturbative QCD (pQCD) factorization works, one deals with objects like usual par-
ton densities (for inclusive processes) and hadron distribution amplitudes (for exclusive processes)
none of which explicitly depends on transverse momenta. Explanations “to public” that these func-
tions result from integrating some more general transverse momentum-dependent functions over
k⊥ may help to create an intuitive picture, but in fact all the functions entering into the collinear
factorization formulas are defined without any reference to transverse momentum, say, through ma-
trix elements of bilocal operators on the light cone. Still, it might be helpful to have “underlying”
formulas, in which transverse momentum enters explicitly.

An important example is the pion distribution amplitude, which is usually [1] defined through
a matrix element of a bilocal operator on the light cone, but sometimes [2] is introduced through
the light-front wave function ψ(x,k⊥) integrated over transverse momentum k⊥. A subtle point
is that the first definition is made within the operator product expansion (OPE) formalism of the
covariant 4-dimensional Lagrangian quantum field theory (QFT), while the wave function ψ(x,k⊥)
is an object of a very different Hamiltonian 3-dimensional light-front (LF) approach [3, 4].

In our recent papers [5, 6, 7, 8], we have developed a formalism which is based on a covariant
QFT in 4 dimensions, but still manages to encode information about the hadronic structure in hard
exclusive processes in terms of transverse momentum dependent distribution amplitudes (TMDAs)
Ψ(x,k⊥) that incorporate the dependence on the transverse momentum of its constituents. Just like
in the light-front formalism, the organization of these functions has the structure of the Fock state
decomposition, i.e. each function is characterized by the number of constituents involved.

For exclusive processes, a standard situation asking to add transverse momentum degrees of
freedom is when the collinear factorization integral diverges at the end point, and hence one needs
some natural source of a cut-off. In this talk, we discuss the use of the TMDA formalism in the
description of the photon-pion transition and pion electromagnetic form factors.

2. Pion Distribution Amplitude

Within the covariant QFT, the pion distribution amplitude (DA) ϕπ(x) is introduced [1] as a
function whose xN moments fN(µ) are given by matrix elements of twist-2 local operators

fN(µ) =
∫ 1

0
xN

ϕπ(x,µ)dx , iN+1 〈0|d̄(0)γ5/n(nD)Nu(0)|π+,P
〉
= (Pn)N+1 fN(µ) , (2.1)

with n2 = 0 and µ being the UV renormalization scale for operators. Since the zeroth moment ,

∫ 1

0
ϕπ(x,µ)dx = fπ , (2.2)

is given by the pion decay constant fπ , we have an important constraint on the pion DA, fixing the
integral under the ϕπ(x) curve, but it puts no restrictions on its shape. In fact, the pion DA depends
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on the renormalization scale µ: ϕπ(x)→ ϕπ(x,µ). The solution of the evolution equation for the
pion DA was obtained [9, 2] in the form of expansion over Gegenbauer polynomials

ϕπ(x,µ) = 6 fπ x(1− x)

{
1+

∞

∑
n=1

a2nC3/2
2n (2x−1)

[
ln(µ2/Λ

2)

]−γ2n/β0
}

. (2.3)

Since γ2n > 0, the pion DA acquires a simple form [10] ϕπ(x,µ → ∞) = 6 fπ x(1− x) (known as
the “asymptotic DA”) when the normalization scale µ tends to infinity.

A quantitative measure of the width of the pion DA at low normalization scales µ . 1 GeV
is given by its moments 〈ξ 2〉 and 〈ξ 4〉 in the relative variable ξ ≡ x− (1− x). Namely,
〈ξ 2〉= 0 for infinitely narrow DA ϕnarrow

π (x) = fπδ (x−1/2);
〈ξ 2〉= 1/5 for asymptotic DA ϕπ(x) = 6 fπx(1− x);
〈ξ 2〉= 1/4 for “root” DA ϕπ(x) = 8

π
fπ

√
x(1− x); and

〈ξ 2〉= 1/3 for flat DA ϕπ(x) = fπ .
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Figure 1: Shapes for pion distribution amplitude. On the left: narrow (green), asymptotic (red), flat (blue).
On the right: asymptotic (red), flat (green), Chernyak-Zhitnitsky (blue).

In particular, a QCD sum rule calculation of Chernyak and Zhitnitsky (CZ) gave the result
〈ξ 2〉 = 0.40 (at µ2 = 1.5 GeV2), which is larger than the value 1/3 of flat DA. The fitting model
ϕCZ

π (x) = 30 fπx(1−x)(1−2x)2 was constructed from the sum of two first terms of the Gegenbauer
expansion (2.3), which has x(1− x) as an overall factor, thus excluding all models with DA’s that
do not linearly vanish at the end-points. However, there is no a priori principle justifying such a
requirement: it is just an assumption which may or may not be true.

One can rewrite QCD sum rule for DA itself rather than for its moments:

fπϕπ(x) =
3M2

2π2 (1− e−s0/M2
)x(1− x)+

8
81

παs〈q̄q〉2
M4

{
11δ (x)+2δ

′(x)+{x→ 1− x}
}
,

demonstrating that the widening of the pion DA in CZ calculation is produced by delta-function
terms due to the quark and gluon condensates taken in local approximation. Bringing in the non-
locality of condensates changes δ (x)→ 2xθ(x<∆)/∆2 with ∆= λ 2

q /2M2 and λ 2
q fixed from the ra-

tio λ 2
q = 〈q̄D2q〉/〈q̄q〉 ≈ 0.4 GeV2. This modification [11, 12] decreases resulting 〈ξ 2〉 to ≈ 0.25.

This value (obtained almost 30 years ago) is in a complete agreement with the most recent lattice
result [13]: 〈ξ 2〉= 0.24 at µ = 2 GeV. The “root” model

ϕ
root
π (x) =

8
π

fπ

√
x(1− x) (2.4)

producing 〈ξ 2〉= 1
4 was proposed in our 1986 paper [11]. The magnitude of this DA in the middle

ϕ root
π (1/2)/ fπ = 4/π ≈ 1.27 is close to the ≈ 1.2 value found by Braun and Filyanov in 1988 [14].
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3. Photon-pion transition form factor

There is also a hope that information about the shape of pion DA can be extracted from ex-
perimental data, in particular from the form factor Fγ∗γ∗π0(q2

1,q
2
2). If one of the photons is real, the

p

q

q0

0

z
xp

(1 � x)p

Figure 2: Parton picture for handbag diagram describing photon-pion transition form factor.

leading-order perturbative QCD (pQCD) prediction [4] is

FpQCD
γ∗γπ

(Q2) =

√
2

3Q2

∫ 1

0

ϕπ(x)
x

dx ≡
√

2 fπ

3Q2 J . (3.1)

Information about the shape of the pion DA is now accumulated in the factor J. Namely,
Jnarrow = 2 for the infinitely narrow DA, ϕnarrow(x) = fπδ (x−1/2);
Jas = 3 for asymptotic DA ϕas(x) = 6 fπx(1− x),
Jroot = 4 for “root” DA ϕπ(x) = 8

π
fπ

√
x(1− x), while

JCZ = 5 for the CZ model ϕCZ(x) = 30 fπx(1− x)(1−2x)2.
Experimentally, Fγ∗γ∗π0(q2

1 ≈ 0,q2
2 =−Q2) was measured recently by BABAR [15] and Belle [16]

collaborations. Unexpectedly, BABAR data [15] are well described by a logarithmic function [17]

JL(Q2) = ln
(

Q2

M2 +1
)
= Q2

∫ 1

0

dx
xQ2 +M2 , (3.2)

if one takes M2 = 0.6 GeV2. Notice that JL(Q2) can be obtained if one uses a flat DA ϕπ(x) = fπ

and changes xQ2→ xQ2 +M2 in the pQCD expression (3.1), expecting that M2 is generated by
transverse momentum. However, the 1/xQ2 → 1/(xQ2 +M2) modification is bringing in, before
the integration over x, a tower of higher twist (M2/xQ2)n power corrections. But it is known [18]
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Figure 3: Left: BABAR data. Right: Fit Jexp(Q2) shown with asymptotic prediction Jas = 3 and JL(Q2).
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that the handbag diagram, because of its simple singularity structure near the coordinate light cone
z2 = 0, cannot generate an infinite tower of power corrections: there are just two power terms in
the OPE for the handbag contribution, those generated by twist-2 and twist-4 operators.

4. TMDA expression for handbag amplitude

To correctly include transverse momentum effects, we parametrize the relevant matrix element
(taking scalar case to simplify notations, for spin-1/2 quarks formulas are the same unless stated)

〈p|φ(0)φ(z)|0〉 ≡ F((pz),z2) =
∫

∞

0
dσ

∫ 1

0
dxΦ(x,σ) eix(pz)−iσ(z2−iε)/4 (4.1)

through the virtuality distribution amplitude (VDA) Φ(x,σ). After that, the coordinate d4z integral
(see Fig. 2) can be taken, and we get the handbag diagram contribution in the VDA representation

T (Q2) =
∫ 1

0

dx
xQ2

∫
∞

0
dσ Φ(x,σ)

{
1− e−[ixQ2+ε]/σ

}
. (4.2)

The first term here corresponds to the twist-2 approximation, with the σ -integral of Φ(x,σ) giving
the pion DA ϕπ(x). The second term combines the contributions of “invisible” higher-twist opera-
tors uncapable to produce power corrections. However, after integration over σ this term produces
a nontrivial function of xQ2. To interpret this result in terms of transverse momentum, we first
specify that the pion momentum p has no transverse components becoming pure p+ for p2 = 0,
and then project the matrix element on z+ = 0 plane by taking z = (z−,z⊥)

〈p|φ(0)φ(z)|0〉|z+=0,p⊥=0 =
∫ 1

0
dxϕ(x,z⊥)eix(pz−) . (4.3)

This defines the impact parameter distribution amplitude (IDA) ϕ(x,z⊥) whose z⊥ Fourier trans-
form gives the transverse momentum dependent distribution amplitude (TMDA) Ψ(x,k⊥)

ϕ(x,z⊥) =
∫

Ψ(x,k⊥)ei(k⊥z⊥) d2k⊥ =
∫

∞

0
dσ Φ(x,σ) eiσ(z2

⊥+iε)/4 . (4.4)

The crucial fact is that TMDA can be written in terms of the covariantly defined VDA

Ψ(x,k⊥) =
i
π

∫
∞

0

dσ

σ
Φ(x,σ) e−i(k2

⊥−iε)/σ . (4.5)

As a result, the handbag term may be written in terms of TMDA. For spin-1/2 quarks, it reads

T (Q2) =
∫ 1

0

dx
xQ2

∫
k2
⊥≤xQ2

Ψ(x,k⊥)
[

1− k2
⊥

xQ2

]
d2k⊥ . (4.6)

One can see here the twist-2 and twist-4 terms as explicit power-like contributions. The hidden
higher twist contributions correspond then to the (minus) integral over the region k2

⊥ ≥ xQ2. Now,
if Ψ(x,k⊥) decreases faster than any power of 1/k2

⊥ for large k⊥ (a usual assumption for the nonper-
turbative part of Ψ(x,k⊥)), then the corrections to the twist-2 and twist-4 term inside the integral
over x would decrease faster than any power of 1/Q2 for large Q2, i.e. they have the property
expected from “invisible” contributions.
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5. Modeling transition form factor

Generic VDA representation (4.1) treats (pz) and z2 as independent variables, so we have
no a priori reasons for a particular correlation of x and σ dependence in VDA. Thus, we try the
simplest example: factorized models for VDAs, which result in factorized models for TMDAs,
Φ(x,σ) = ϕ(x)Φ(σ)⇒Ψ(x,k⊥) = ϕ(x)ψ(k2

⊥)/π in which the x-dependence and k⊥-dependence
appear in separate factors. Assuming a Gaussian dependence on k⊥ for the TMDA results in a
Gaussian dependence on z⊥ for the IDA

ΨG(x,k⊥) =
ϕ(x)
πΛ2 e−k2

⊥/Λ2 ⇒ ϕG(x,z⊥) = ϕ(x)e−z2
⊥Λ2/4 . (5.1)

One may argue that a Gaussian fall-off for large z⊥ is too fast compared to exponential ∼ e−|z⊥|m

behavior of a massive propagator. Some models with an exponential fall-off were given in Refs.
[5, 6, 7, 8]. Here we will consider an extreme m = 0 limit of these models, when

Φm=0(x,σ ;Λ) = ϕ(x)
eiσ/Λ2−εσ

iΛ2 giving ϕm=0(x,z⊥) =
ϕ(x)

1+ z2
⊥Λ2/4

. (5.2)

Note that the z2
⊥ term of the z⊥ expansion of ϕ(x,z⊥) in this model was adjusted to coincide with

that of the exponential model, so that Λ2 has the same meaning of the scale of ψ̄D2ψ operator.
We can use these models now to calculate the higher twist contributions to the transition form

factor. In the case of the Gaussian model (5.1), we have (for spin-1/2 quarks)

FG(Q2) =
∫ 1

0

dx
xQ2 ϕ(x)

[
1− Λ2

xQ2

(
1− e−xQ2/Λ2

)]
. (5.3)

Again, for large Q2, Eq. (5.3) displays a power-like twist-4 correction and the term that corresponds
to the region k2

⊥ ≥ xQ2 accumulating contributions of “invisible” operators with twist 6 and higher.
Note that, despite of the 1/x2 singular term in the integrand, the integral (5.3) is finite for ϕ(x)
as singular as 1/x1−α with α > 0, which includes a flat DA (with α = 1). Furthermore, a formal
Q2→ 0 limit is finite: FG(Q2 = 0) = fπ/2Λ2. In fact, F(Q2) is finite for Q2 = 0 in any model with
finite Ψ(x,k⊥ = 0). For the non-Gaussian m = 0 model, we have

F(Q2) =
∫ 1

0

dx
xQ2 ϕ(x)

[
1− Λ2

xQ2 +2K2(2
√

xQ/Λ)

]
, (5.4)

where Λ2 is again the scale characterizing the q̄D2q matrix element.
To describe the BABAR data we use a flat DA ϕ(x) = fπ with the scale Λ2

G = 0.35GeV2 for
the Gaussian model and Λ2

m=0 = 0.6GeV2 for the m = 0 non-Gaussian model. Fitting the Belle
data requires a more narrow DA ϕ(x) ∼ fπ(xx̄)0.4 with the scale Λ2

G = 0.3GeV2 for the Gaussian
model and a larger value Λ2

m=0 = 0.4GeV2 for the m = 0 non-Gaussian model.
A close agreement of our models with the data (see Fig. 4) for a very wide range of Q2 indi-

cates that the “invisible contributions” correctly describe the physics behind the nontrivial shape of
the experimental curves for Q2F(Q2). Note also that one has J = 4.5 for the DA ϕ(x)∼ fπ(xx̄)0.4

used to describe the Belle data, which means that the curve J(Q2) is well below its asymptotic
value even for Q2 ∼ 40 GeV2. Within the standard pQCD picture, in which the form factor F(Q2)

6
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Figure 4: BABAR and Belle data compared to model curves described in the text.

is a sum of a few power-like terms, and given the size Λ2
G = 0.3GeV2 or Λ2

m=0 = 0.4GeV2 of the
scale involved, it is simply impossible to understand such a slow approach to the asymptotic value.

Another point is that in the region Q2 . 10 GeV2, where the BaBar and Belle data agree, the
data may be described by models with both flat and ∼ (xx̄)0.4 behavior. In other words, the data
alone cannot tell us what is the shape of the pion DA, even when the data are in a region of Q2 by
two orders of magnitude larger than Λ2

QCD.

6. One-gluon-exchange diagram for the pion form factor

Let us now apply the VDA formalism to the hard contribution for the pion electromagnetic
(EM) form factor. The short-distance subprocess in this case contains one quark and one gluon
propagator, with virtualities xQ2 and xyQ2, respectively (see Fig. 5a).

a)

z

0

p1 p2

b)

Figure 5: Perturbative QCD one-gluon-exchange contribution to the pion EM form factor

In the twist-2 expression for spin-1/2 quarks, the denominator factor xQ2 of the hard quark
propagator is cancelled by the xQ2 factor coming from the numerator trace, so that the final integral

Fas(pQCD)
π (Q2) =

8παs

9

∫ 1

0
dx
∫ 1

0
dy

ϕπ(x)ϕπ(y)
xyQ2 = 2

s0

Q2
αs

π
(J/3)2

(where s0 = 4π2 f 2
π ≈ 0.7 GeV2) is given by an expression which may be thought of as coming

from a diagram where the hard quark propagator is shrunk into a point (see Fig. 5b). Again, the
pQCD result diverges for flat DA ϕπ(x) = fπ . Since the virtuality of exchanged gluon is xyQ2, one
may naively expect xyQ2→ xyQ2 +2M2 when the transverse momentum is included. As we have
learned, in the VDA approach such effects are desribed by formulas more complicated than that.

7



P
o
S
(
Q
C
D
E
V
2
0
1
5
)
0
1
0

Pion EM Form Factor & Virtuality Distributions A. V. Radyushkin

To illustrate the VDA modifications, we consider the simplified diagram shown in Fig. 5b that
has the same asymptotic expression as the full pQCD diagram Fig. 5a. It may be written as

T (p1, p2) =a
∫ 1

0
dx
∫ 1

0
dy
∫

d4ze−ix(p1z)+iy(p2z)Dc(z) B(x,z2/4)B(y,z2/4) . (6.1)

in the coordinate representation (we denote a = 8παs/9). In terms of VDAs, we obtain

F(Q2) =a
∫

∞

0
dσ1

∫
∞

0
dσ2

∫ 1

0
Φ(x,σ1)

∫ 1

0
Φ(y,σ2)

dxdy
xyQ2

[
1− e−[ixyQ2+ε]/(σ1+σ2)

]
, (6.2)

The first term in the square brackets does not depend on σ1,σ2 and produces the twist-2 ex-
pression. Using the definition (4.3) of IDA ϕ(x,b⊥) we arrive at

F(Q2) =
a

(2π)2

∫ 1

0
dx
∫ 1

0
dy
∫

k2
⊥≤xyQ2

d2k⊥
xyQ2

∫
ei(k⊥b⊥) ϕ(x,b⊥)ϕ(y,b⊥)d2b⊥ . (6.3)

The k2
⊥ ≤ xyQ2 restriction converts into the Bessel function J1 in the impact parameter space giving

F(Q2) =a
∫ 1

0
dx
∫ 1

0
dy
∫

∞

0

db⊥√
xyQ2

J1(b⊥
√

xyQ2)ϕ(x,b⊥)ϕ(y,b⊥) . (6.4)

Taking the factorized Ansatz with a Gaussian (G) or power-law (P) dependence on b2
⊥

ϕG(x,b⊥) = ϕ(x)e−b2
⊥Λ2

G/4 , ϕP(x,b⊥) = ϕ(x)/(1+b2
⊥Λ

2
P/4) (6.5)

we obtain the following expressions

FG(Q2) =a
∫ 1

0

dxdy
xyQ2 ϕ(x)ϕ(y)

[
1− e−xyQ2/2Λ2

G

]
≡ a

f 2
π

Q2 IG(Q2) = 2
s0

Q2
αs

π

IG(Q2)

9
, (6.6)

FP(Q2) =a
∫ 1

0

dxdy
xyQ2 ϕ(x)ϕ(y)

[
1−2

xyQ2

Λ2
P

K2(2
√

xyQ/ΛP)

]
≡ a

f 2
π

Q2 IP(Q2) . (6.7)

Just like in the transition form factor case, these integrals are finite for Q2 = 0, with the values
FG(Q2 = 0) = a f 2

π/2Λ2
G, FP(Q2 = 0) = a f 2

π/Λ2
P .

Taking for definitness the scales Λ2
G = 0.35 GeV2 and Λ2

P = 0.6 GeV2 of the same size as
those that were fitting the BaBar transition form factor data, we plot the ratio I(Q2)/9 for both
cases, see Figs. 6, 7. To show the sensitivity to the shape of the pion DA, we use 3 different choices
for ϕ(x), namely, flat, “root”, and asymptotic. Notice that “1” on these plots would correspond
to pQCD prediction with asymptotic DA. One can see from Fig. 6 that it requires pretty large
Q2 & 20 GeV2 to clearly discriminate between the 3 curves. To emphasize this point, we repeat the
plots on Fig. 7, restricting the range of Q2 to experimentally accessible values of Q2 . 10 GeV2.
One can see that the 3 curves are practically indistinguishable in this region. To understand this
outcome, we note that the curves are still rising with Q2 and are almost linear. Thus, we conclude
that the average gluon virtuality 〈xyQ2〉 in this region is practically constant, e.g. in Gaussian case
〈1/(xyQ2)〉 = [2Λ2

G + 〈x〉〈y〉Q2/2+ . . .]−1 = [2Λ2
G +Q2/8+ . . .]−1 . It starts to become visibly

proportional to Q2 only when the curves on Fig. 6 flatten, i.e. well above Q2 ∼ 10 GeV2.
In other words, we see no chances to detect experimentally the ∼ 1/Q2 perturbative QCD

prediction for the “hard” gluon-exchange contribution. Furthermore, we observe that the shape

8
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Figure 6: Functions I(Q2) for Gaussian (left) and power-like (right) IDA models for Q2 up to 100 GeV2.

of the pion DA is not important as far as Q2 . 10 GeV2: the result for the flat DA in this region
is practically the same as for the asymptotic DA. Moreover, because the asymptotic behavior sets
very slowly, the absolute value of I(Q2)/9 is well below “1” corresponding to the formal pQCD
prediction, approaching just a half of it for the highest Q2 ∼ 10 GeV2 reachable at Jefferson Lab.

Numerically, using 2s0 ≈ 1.3 GeV2 and assuming a “frozen” value αs/π = 0.1, we have
Q2Fgluon exchange

π (Q2) = 0.13 [I(Q2)/9] GeV2. Thus, our estimate gives Q2Fgl. ex.
π (Q2). 0.04 GeV2

for Q2 = 2.45 GeV2 or more than 10 times below the existing JLab measurement [19]. Though this
outcome doubles to 0.08 GeV2 for Q2 = 10 GeV2, it still does not look significant.
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Figure 7: Functions I(Q2) for Gaussian (left) and power-like (right) IDA models for Q2 up to 10 GeV2.

One may ask: if the gluon exchange contribution is so small, what is the mechanism explaining
observed pion EM form factor behavior? The answer was given long time ago [20]: it is the
Feynman mechanism, corresponding (in the light-front terminology) to the Drell-Yan [3] overlap
of soft wave functions. However, this is a subject of a different talk and, hopefully, another direction
for applications of the VDA formalism!

Acknowledgements

This work is supported by Jefferson Science Associates, LLC under U.S. DOE Contract No.
DE-AC05-06OR23177 and by U.S. DOE Grant #DE-FG02-97ER41028.

References

[1] A. Radyushkin, Deep Elastic Processes of Composite Particles in Field Theory and Asymptotic
Freedom, JINR report P2-10717 (1977) [hep-ph/0410276].

9

http://arxiv.org/abs/hep-ph/0410276


P
o
S
(
Q
C
D
E
V
2
0
1
5
)
0
1
0

Pion EM Form Factor & Virtuality Distributions A. V. Radyushkin

[2] G. P. Lepage and S. J. Brodsky, Exclusive Processes in Quantum Chromodynamics: Evolution
Equations for Hadronic Wave Functions and the Form-Factors of Mesons, Phys. Lett. B87 (1979)
359–365.

[3] S. Drell and T.-M. Yan, Connection of Elastic Electromagnetic Nucleon Form-Factors at Large Q2

and Deep Inelastic Structure Functions Near Threshold, Phys.Rev.Lett. 24 (1970) 181–185.

[4] G. P. Lepage and S. J. Brodsky, Exclusive Processes in Perturbative Quantum Chromodynamics,
Phys. Rev. D22 (1980) 2157.

[5] A. V. Radyushkin, Virtuality Distributions in Application to γγ∗→ π0 Transition Form Factor at
Handbag Level, Phys. Lett. B735 (2014) 417–425, [arXiv:1404.7032].

[6] A. V. Radyushkin, Virtuality Distributions and γγ∗→ π0 Transition Form Factor at Handbag Level,
Few Body Syst. 56 (2015), no. 6-9 287–293.

[7] A. V. Radyushkin, Virtuality Distributions and Pion Transition Form Factor, Int. J. Mod. Phys. Conf.
Ser. 37 (2015) 1560050.

[8] A. V. Radyushkin, Virtuality and Transverse Momentum Dependence of Pion Distribution Amplitude,
Report JLAB-THY-15-2145 (2015) [arXiv:1510.02517].

[9] A. V. Efremov and A. V. Radyushkin, Factorization and Asymptotical Behavior of Pion Form-Factor
in QCD, Phys. Lett. B94 (1980) 245–250.

[10] A. Efremov and A. Radyushkin, High momentum transfer processes in QCD, JINR report E2-11535
(1978).

[11] S. V. Mikhailov and A. V. Radyushkin, Nonlocal Condensates and QCD Sum Rules for Pion Wave
Function, JETP Lett. 43 (1986) 712. [Pisma Zh. Eksp. Teor. Fiz.43,551(1986)].

[12] S. V. Mikhailov and A. V. Radyushkin, The Pion wave function and QCD sum rules with nonlocal
condensates, Phys. Rev. D45 (1992) 1754–1759.

[13] V. M. Braun, S. Collins, M. Göckeler, P. Pérez-Rubio, A. Schäfer, R. W. Schiel, and A. Sternbeck,
Second Moment of the Pion Light-cone Distribution Amplitude from Lattice QCD, Phys. Rev. D92
(2015), no. 1 014504, [arXiv:1503.03656].

[14] V. M. Braun and I. E. Filyanov, QCD Sum Rules in Exclusive Kinematics and Pion Wave Function, Z.
Phys. C44 (1989) 157. [Yad. Fiz.50,818(1989)].

[15] BaBar Collaboration, B. Aubert et al., Measurement of the γγ∗→ π0 transition form factor, Phys.
Rev. D80 (2009) 052002, [arXiv:0905.4778].

[16] Belle Collaboration, S. Uehara et al., Measurement of γγ∗→ π0 transition form factor at Belle, Phys.
Rev. D86 (2012) 092007, [arXiv:1205.3249].

[17] A. V. Radyushkin, Shape of Pion Distribution Amplitude, Phys. Rev. D80 (2009) 094009,
[arXiv:0906.0323].

[18] I. V. Musatov and A. V. Radyushkin, Transverse momentum and Sudakov effects in exclusive QCD
processes: γ∗γπ0 form-factor, Phys. Rev. D56 (1997) 2713–2735, [hep-ph/9702443].

[19] Jefferson Lab F(pi)-2 Collaboration, T. Horn et al., Determination of the Charged Pion Form Factor
at Q2 = 1.60 and 2.45 (GeV/c)2, Phys. Rev. Lett. 97 (2006) 192001, [nucl-ex/0607005].

[20] V. A. Nesterenko and A. V. Radyushkin, Sum Rules and Pion Form-Factor in QCD, Phys. Lett. B115
(1982) 410.

10

http://arxiv.org/abs/1404.7032
http://arxiv.org/abs/1510.02517
http://arxiv.org/abs/1503.03656
http://arxiv.org/abs/0905.4778
http://arxiv.org/abs/1205.3249
http://arxiv.org/abs/0906.0323
http://arxiv.org/abs/hep-ph/9702443
http://arxiv.org/abs/nucl-ex/0607005

