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Toward NNLL Resummation for Hadron Production in Hadronic Collisions Felix Ringer

1. Introduction

The advances of precision measurements in hadron-hadron collisions carried out at experi-
ments such as the LHC, RHIC and low energy fixed-target experiments, have lead to a growing
interest in the resummation of threshold logarithms in the partonic hard-scattering cross sections.
The partonic threshold is reached when the initial partons have just enough energy to produce the
observed final state. In this work, we consider the hadronic di-hadron production cross section. In
this case, the partonic threshold is reached when ŝ = m̂2, that is, τ̂ ≡ m̂2/ŝ = 1. Here,

√
ŝ is the

partonic center-of-mass system (c.m.s.) energy and m̂ the invariant pair mass of the two outgoing
partons that fragment into the observed hadron pair. To some extend this process may be viewed
as the “full QCD” extension of the Drell-Yan process, where the lepton pair in the final state is
replaced by a hadron pair. The threshold logarithms in the perturbative series take the general form

∞

∑
k=0

2k

∑
`=1

α
k
s Ak,`

(
ln2k−`(1− τ̂)

1− τ̂

)
+

, (1.1)

where αs is the strong coupling constant, Ak,` are perturbatively calculable coefficients and the
“plus” distribution will be defined below. The all-order set of logarithms with a fixed ` are often
referred to as the `th tower of logarithms. Following the literature [1, 2, 3], threshold logarithms
can be exponentiated, or “resummed”, after taking an integral transform conjugate to the relevant
kinematical variable (here τ̂). The accuracy of resummation is defined by counting the towers of
logarithms that are fully under control. At next-to-leading logarithmic (NLL) accuracy three towers
are under control and at next-to-next-to-leading logarithmic (NNLL) accuracy five towers are fully
taken into account. Previously, Ref. [4] presented a NLL study for di-hadron production which
forms the basis for our studies. In this work, we are going to extend the accuracy of resummation
to the fourth tower, i.e. partial NNLL. This can only be achieved by taking into account the non-
trivial color structure of the partonic QCD processes. For the first time, we derive all relevant
ingredients for the extension of threshold resummation toward NNLL for a process where four
colored partons are taking part in the scattering at leading-order.

The partonic QCD scattering processes encountered in di-hadron production give the underly-
ing structure for various other observables as well. Hence, di-hadron production is an ideal starting
point for the study of QCD resummation beyond NLL and can serve as a template for reactions
of more significant phenomenological interest. That said, di-hadron production is phenomenolog-
ically relevant in its own right as experimental data as a function of the pair’s mass are available
from various fixed-target experiments [5, 6, 7], as well as from the ISR [8]. In addition, di-hadron
cross sections are also accessible at the Relativistic Heavy Ion Collider (RHIC).

In Sec. 2 we present the basic formulas for the di-hadron cross section as a function of pair
mass at fixed order in perturbation theory, and display the role of the threshold region. Section 3
presents several details of the NNLL threshold resummation for the cross section. In Sec. 4 we give
phenomenological results, comparing the threshold resummed calculations at NLL and NNLL to
some of the available experimental data. Finally, we summarize our results in Sec. 5. The results
reported in this paper are taken from [9], to which we refer the reader for further details.
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2. Hadron pair production near partonic threshold

2.1 Perturbative cross section

For sufficiently large invariant mass squared of the final state hadron pair M2, the cross section
for the process H1H2→ h1h2X can be written in a factorized form

M4 dσH1H2→h1h2X

dM2d∆ηdη̄
= ∑

abcd

∫ 1

0
dxadxbdzcdzd f H1

a (xa,µF) f H2
b (xb,µF)zcDh1

c (zc,µF)zdDh2
d (zd ,µF)

×ωab→cd

(
τ̂,∆η , η̂ ,αs(µR),

µR

m̂
,

µF

m̂

)
. (2.1)

Here we defined the difference and average of the final state hadron c.m.s. rapidities η1,2 as

∆η =
1
2
(η1−η2) , η̄ =

1
2
(η1 +η2) , (2.2)

where ∆η is boost invariant and η̄ is related to the average rapidity in the partonic c.m.s. η̂ by

η̂ = η̄− 1
2

ln
(

xa

xb

)
. (2.3)

The functions f H1,2
a,b in Eq. (2.1) are the parton distribution functions for partons a,b in hadrons H1,2

and Dh1,2
c,d are the fragmentation functions for partons c,d fragmenting into the observed hadrons

h1,2. Furthermore, we define the variables

τ̂ =
m̂2

ŝ
, τ

′ =
m̂2

S
, (2.4)

where S is the hadronic c.m.s. energy. The variable τ̂ appears in the hard-scattering functions
ωab→cd in Eq. (2.1), whereas τ ′ will be used to below to define the Mellin transformation. The
functions ωab→cd may be computed in QCD perturbation theory

ωab→cd =
(

αs

π

)2
[

ω
LO
ab→cd +

αs

π
ω

NLO
ab→cd +

(
αs

π

)2
ω

NNLO
ab→cd + . . .

]
. (2.5)

The limit τ̂ → 1 corresponds to the partonic threshold, where the hard-scattering uses all available
energy to produce the pair. In general, as discussed in [4], near partonic threshold, the ωab→cd can
be written as

ωab→cd

(
τ̂,∆η , η̂ ,αs(µR),

µR

m̂
,

µF

m̂

)
= δ (η̂) ω

sing
ab→cd

(
τ̂,∆η ,αs(µR),

µR

m̂
,

µF

m̂

)
+ ω

reg
ab→cd

(
τ̂,∆η , η̂ ,αs(µR),

µR

m̂
,

µF

m̂

)
. (2.6)

The function δ (η̂) implies “LO kinematics” at threshold where η̄ = 1
2 ln(xa/xb) in Eq. (2.3). All

threshold logarithms in the perturbative series, see Eq. (1.1), are contained in the functions ω
sing
ab→cd .

Threshold resummation addresses these logarithms to all orders in the strong coupling. All re-
maining contributions, which are subleading near threshold, are collected in the “regular” functions
ω

reg
ab→cd .
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2.2 Mellin and Fourier transforms

In order to achieve the resummation of threshold logarithms, we take Fourier and Mellin in-
tegral transforms in the following way [4]. We separate the hard-scattering function and the PDFs
from the fragmentation functions. We only take moments of the PDFs and the hard-scattering
function, where the Mellin moments are taken with respect to τ ′, defined in (2.4), and the Fourier
transform is with respect to η̄ . One obtains

∑
ab

∫
∞

−∞

dη̄ eiνη̄

∫ 1

0
dτ
′ (

τ
′)N−1

∫ 1

0
dxa dxb f H1

a (xa,µF) f H2
b (xb,µF)ωab→cd

(
τ̂,∆η , η̂ ,αs(µR),

µR

m̂
,

µF

m̂

)
= ∑

ab
f̃ H1
a (N +1+ iν/2,µF) f̃ H2

b (N +1− iν/2,µF) ω̃ab→cd

(
N,ν ,∆η ,αs(µR),

µR

m̂
,

µF

m̂

)
, (2.7)

where f̃ H
a (N,µF)≡

∫ 1
0 xN−1 f H

a (x,µF)dx, and

ω̃ab→cd

(
N,ν ,∆η ,αs(µR),

µR

m̂
,

µF

m̂

)
≡
∫

∞

−∞

dη̂ eiνη̂

∫ 1

0
dτ̂ τ̂

N−1
ωab→cd

(
τ̂,∆η , η̂ ,αs(µR),

µR

m̂
,

µF

m̂

)
.

(2.8)
Due to the delta function δ (η̂) in (2.6), the dη̂ integral becomes trivial near threshold. Threshold
logarithms in ωab→cd , see Eq. (1.1), will be transformed into logarithms of the Mellin variable N

α
k
s

(
ln2k−`(1− τ̂)

1− τ̂

)
+

→ α
k
s ln2k−`+1 N̄ , (2.9)

where N̄ = NeγE and the “plus”-distributions are defined by∫ 1

x0

f (x)(g(x))+ dx≡
∫ 1

x0

( f (x)− f (1)) g(x)dx− f (1)
∫ x0

0
g(x)dx . (2.10)

After resummation is achieved, we take the inverse Fourier and Mellin transformations and the
result will be convoluted with the two isolated fragmentation functions in (2.1).

3. Threshold resummation for hadron-pair production toward NNLL

3.1 Resummation formula at next-to-next-to-leading logarithm

We start by presenting the resummed cross section and then discuss its structure. The re-
summed cross section in moment space takes the following form [2, 3, 10, 11, 4]:

ω̃
resum
ab→cd

(
N,∆η ,αs(µR),

µR

m̂
,

µF

m̂

)
= ξR

(
αs(µR),

µR

m̂

)
ξ

abcd
F

(
αs(µR),

µF

m̂

)
× ∆

N+1
a

(
αs(µR),

µR

m̂
,

µF

m̂

)
∆

N+1
b

(
αs(µR),

µR

m̂
,

µF

m̂

)
× ∆

N+2
c

(
αs(µR),

µR

m̂
,

µF

m̂

)
∆

N+2
d

(
αs(µR),

µR

m̂
,

µF

m̂

)
× Tr

{
H (∆η ,αs(µR)) S †

N

(
∆η ,αs(µR),

µR

m̂

)
S (αs(m̂/N̄),∆η)SN

(
∆η ,αs(µR),

µR

m̂

)}
ab→cd

. (3.1)
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The functions ξR,F are related to the scale dependence of the resummed cross section but they do
not contain threshold logarithms, see [9] for more details. For every external parton in the hard-
scattering, we need to take into account a “jet function” ∆N

i (i = a,b,c,d) which exponentiates
logarithms that arise due to soft-collinear gluon emissions [4, 12, 13]. In the MS scheme, the jet
functions are given by [1, 15, 14]

∆
N
i

(
αs(µR),

µR

m̂
,

µF

m̂

)
= Ri(αs(µR)) exp

{∫ 1

0
dz

zN−1−1
1− z

×

[∫ (1−z)2m̂2

µ2
F

dµ2

µ2 Ai(αs(µ))+Di(αs((1− z)m̂))

]}
. (3.2)

The functions Ai, Di and Ri may be calculated perturbatively as series in αs. The relevant coeffi-
cients up to NNLL accuracy can be found in [1, 9, 14, 15, 16, 17, 18, 19, 20]. The evaluation of
the integrals in Eq. (3.2) up to NNLL accuracy can be found in [9].

In addition, we obtain a trace structure Tr{HS †
N SSN} in color space [2, 10] that is associated

with large-angle soft emission which is sensitive to the color state of the hard scattering. Each of the
factors Hab→cd , SN,ab→cd , Sab→cd is a matrix in the space of color exchange operators [2, 10]. The
Hab→cd are the hard-scattering functions and the Sab→cd are soft functions which may be calculated
perturbatively

Hab→cd (∆η ,αs) =
(

αs

π

)2 [
H(0)

ab→cd (∆η)+
αs

π
H(1)

ab→cd (∆η)+O(α2
s )
]
,

Sab→cd (αs(m̂/N̄),∆η) = S(0)ab→cd +
αs(m̂/N̄)

π
S(1)ab→cd (∆η)+O(α2

s ) . (3.3)

As an example, we consider the partonic process qq′→ qq′ in the next Section. Furthermore, two
exponential functions SN,ab→cd appear when solving the renormalization group equation for the
soft function

SN,ab→cd

(
∆η ,αs(µR),

µR

m̂

)
= P exp

[
1
2

∫ m̂2/N̄2

m̂2

dµ2

µ2 Γab→cd (∆η ,αs(µ))

]
, (3.4)

where P denotes path ordering. The soft anomalous dimensions Γab→cd start at O(αs). The first-
order terms Γ

(1)
ab→cd are presented in [2, 10, 11, 21]. For resummation at NNLL accuracy, we also

need to take into account the second-order contributions Γ
(2)
ab→cd which were derived in [22].

3.2 Hard and Soft Matrices

The leading-order matrices H(0)
ab→cd and S(0)ab→cd can be found in [2, 10, 11]. For the qq′→ qq′

process, choosing a color octet-singlet basis, they read

H(0) =

( 2
N2

c

s2+u2

t2 0

0 0

)
, S(0) =

(
N2

c−1
4 0

0 N2
c

)
, (3.5)

where s, t,u are the standard Mandelstam variables. At O(αs), the hard-scattering matrix H(1)
ab→cd

can be extracted from purely virtual diagrams. We make use of the 1-loop amplitudes of [23, 24, 25]
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Figure 1: Di-hadron cross sections for NA24 [5] kinematics, see text.

which are given in a helicity basis. A similar color decomposition needs to be performed as for the
leading-order result. Since the final expression is rather lengthy, we refer the reader to [9], where a
detailed derivation is presented. Note that a similar calculation within the framework of SCET was
carried out in [26, 27] and very recently in [28]. The soft matrix S(1)ab→cd at O(αs) can be obtained
by analyzing the color structure of 2→ 3 real-emission diagrams. As an example, we present the
explicit result for the qq′→ qq′ process

S(1) =
CF

2

(
Li2
(
−u

t

)
+(2−N2

c )Li2
(
− t

u

)
−2Nc Li2

(
− t

u

)
−2Nc Li2

(
− t

u

)
−4N2

c Li2
(
−u

t

)
)

, (3.6)

see [9] for a detailed derivation.

4. Phenomenological results

We present some numerical studies illustrating the effects of threshold resummation at NNLL
for di-hadron production. In particular, we compare our new results to the NLL results of [4] and to
the full NLO ones of [29]. In particular, we compare our new results to the NLL and NLO results
of [4]. We compare to the full NLO of [29]. Firstly, we consider two examples from [4] concerning
the NA24 [5] (fixed target) and the CCOR [8] (ISR collider) pp→ π0π0 scattering experiments.
The two experiments were operating at a c.m.s. energy of

√
S = 23.7 GeV and

√
S = 62.4 GeV

respectively. See [4, 9] for the experimental cuts employed. For all our numerical calculations
presented here, we use the CTEQ6M5 set of parton distribution functions [30] and the “de Florian-
Sassot-Stratmann” (DSS) set of fragmentation functions [31]. We choose the renormalization and
factorization scales equal, µR = µF = µ , and always plot the cross section for µ = M and µ = 2M
in order to investigate the QCD scale uncertainty.

On the left side of Fig. 1, we show the comparison of NLO (dashed), NLL resummed (dot-
dashed) and NNLL resummed (solid) calculations of the di-hadron cross section to the NA24 data.
µ = M corresponds to the upper lines and µ = 2M to the lower lines. The crosses show the NLO

6
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Figure 2: Di-hadron cross sections for CCOR [8] (left) and RHIC (right) kinematics, see text.

expansion of the resummed result which agrees with the full NLO result to a remarkable degree.
The NLL resummed cross section has a somewhat steeper slope than the NNLL resummed result.
One clearly notices the improved scale dependence when going from NLO to NLL and finally to
NNLL accuracy. We study the improved scale uncertainty in more detail on the right side of Fig. 1.
We show the variation of the cross section as a function of µ/M for a pair mass of M = 5.125 GeV
which corresponds to the leftmost point on the left side of Fig. 1. We plot both the NLL resummed
(dot-dashed) and the NNLL resummed (solid) cross sections. As can be seen, the scale dependence
at NNLL is almost flat even up to scales as large as µ = 10M.

Secondly, we compare our theoretical calculations to CCOR data on the left side of Fig. 2.
The ISR was colliding protons at a c.m.s. energy of

√
S = 62.4 GeV. We find very good agreement

between our theoretical NNLL calculation and the data. Finally, we also show results for the di-
hadron cross section for RHIC energies at

√
S = 200 GeV. For both plots in Fig. 2, we applied the

same kinematical cuts as for the NA24 experiment shown in Fig. 1.

5. Conclusions

We have extended the framework of threshold resummation beyond next-to-leading logarith-
mic accuracy for di-hadron production in hadronic collisions, H1H2→ h1h2X . We have resummed
four towers of threshold resummation by taking into account the first-order corrections to the hard-
scattering function H and the soft function S. Both of these functions are matrices in color space.
In our numerical studies, we have found that the scale uncertainty is much reduced compared to
previous calculations at NLL or NLO.

There are important further applications of our work in the context of hadronic collisions.
For example, the cross section for single-inclusive hadron production H1H2→ hX is of great phe-
nomenological relevance. The structure of the resummed partonic cross section is in fact similar
to the case of di-hadron production [32, 33, 34]. With the techniques established in this work, one
may also extend the accuracy of resummation for this process toward NNLL. In addition, di-jet and
single-inclusive jet [35] cross sections are of particular interest at present-day collider experiments.

7
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