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1. Introduction

Transverse momentum dependent parton distribution functions (TMDs) give valuable insight
into the intrinsic motion of partons and the correlation between their spins and momenta, providing
a full three-dimensional picture of hadrons in momentum space. Their knowledge is necessary to
understand the observed polarization effects in high-energy scattering processes, like transverse
single spin asymmetries [1, 2, 3], which have gathered considerable attention from both experi-
mental and theoretical communities in recent years. From the theory point of view, proofs of TMD
factorization exist for a few processes in which two energy scales are present: a hard one, Q, and a
transverse momentum, qT , such that qT � Q. Typical examples are semi-inclusive deeply inelastic
scattering (SIDIS), Drell-Yan (DY) and e+e− annihilation processes [4, 5, 6, 7]. On the experimen-
tal side, much effort has been made to extract the quark TMDs from low energy data, mainly from
HERMES, COMPASS and JLab measurements [1, 2]. On the contrary, almost nothing is known
experimentally about gluon TMDs [8, 9].

If the proton is unpolarized, in addition to the unpolarized gluon TMD denoted by f g
1 , a dis-

tribution of linearly polarized gluons, h⊥g
1 , corresponding to an interference between +1 and −1

gluon helicity states, can in principle be nonzero [10]. In Ref. [11] it was found that h⊥g
1 can

contribute to the dijet imbalance in hadronic collisions, commonly used to determine the average
transverse momentum squared of partons inside protons. Depending on its size and on whether its
contribution can be calculated and taken into account, h⊥g

1 can complicate or even hamper this ex-
traction. Hence it is important to determine its size separately, using other observables. Although in
Ref. [11] a method has been discussed to isolate h⊥g

1 by means of an azimuthal angular dependent
weighting of the cross section, such a process is expected to suffer from contributions that break
factorization, through initial (ISI) and final state interactions (FSI) [12].

In the present contribution, after providing a formal definition of gluon TMDs in QCD, heavy
quark pair and dijet production in electron-proton collisions is discussed. Such processes, that
could be studied at a future Electron Ion Collider (EIC), offer a theoretically clean and safe way
to probe both f g

1 and h⊥g
1 because TMD factorization is expected to hold [13, 14] . Furthermore,

it is shown how complementary information could come, in proton-proton collisions, from the
analysis of Higgs boson production in association with a jet [15] and from quarkonium production
in association with a photon [16]. For all these process, estimates are provided for observables
sensitive to gluon TMDs, which depend on the transverse momentum imbalance of two particles
or jets in the final state.

2. Operator definition of gluon TMDs

The information on the gluon TMDs of an unpolarized proton carrying four-momentum P is
encoded in the transverse momentum dependent correlator, defined as follows [10]

Γ
[U ]µν
g (x, pppT) =

nρ nσ

(p·n)2

∫ d(ξ ·P)d2ξT

(2π)3 eip·ξ 〈P| Trc
[

Fµρ(0)U[0,ξ ] F
νσ (ξ )U ′[ξ ,0]

]
|P〉
⌋

LF

= − 1
2x

{
gµν

T f g [U ]
1 (x, ppp2

T)−
(

pµ

T pν
T

M2
p

+gµν

T

ppp2
T

2M2
p

)
h⊥g [U ]

1 (x, ppp2
T)

}
, (2.1)
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where n is a lightlike vector conjugate to P, p is the gluon momentum decomposed as p = xP+

pT + p−n (with p2
T =−ppp2

T ) and Fµν denotes the gluon field strength. Moreover, a trace over color
is taken in the integrand, where non-locality is limited to the lightfront (LF), ξ ·n = 0. The process
dependent gauge links U[0,ξ ] and U ′[ξ ,0] are path ordered exponentials in the triplet representation
and are needed to ensure the gauge invariance of the correlator.

Since the above correlator cannot be calculated from first principles, its expansion in terms of
TMDs is commonly used for phenomenological applications. This expansion is given at the leading
twist level, with the naming convention of Ref. [17], in the second line of Eq. (2.1), where we have
introduced the transverse projector gµν

T = gµν −Pµnν/P ·n−nµPν/P ·n. The function f g [U ]
1 is the

distribution of unpolarized gluons inside an unpolarized proton, while h⊥g [U ]
1 represents the T -even

distribution of linearly polarized gluons inside an unpolarized proton. The function h⊥g [U ]
1 is also

even in pT because it enters in the correlator as a rank 2 tensor, describing a ∆L = 2 helicity-flip
distribution. Furthermore, it satisfies the following, model-independent, positivity bound,

|ppp2
T |

2M2
p
|h⊥g [U ]

1T (x, ppp2
T)| ≤ f g [U ]

1 (x, ppp2
T) . (2.2)

Like all other TMDs, f g [U ]
1 and h⊥g [U ]

1 receive contributions from ISI or FSI, summed up into
the gauge links, that lead to their process dependence or even to violations of QCD factorization,
as already mentioned above. It is therefore important to consider extractions from several different
processes, like the ones proposed in the following. In this way, the nonuniversality and factorization
breaking issues can be properly studied and quantified.

3. Heavy quark pair and dijet production in DIS

Assuming TMD factorization, the cross section for the process e(`)+ p(P)→ e(`′)+Q(K1)+

Q̄(K2)+X , with the four-momenta of the particles given inside brackets, can be written as

dσ =
1
2s

d3`′

(2π)3 2E ′e

d3KQ

(2π)3 2EQ

d3KQ̄

(2π)3 2EQ̄

∫
dxd2 pppT (2π)4

δ
4(q+p−KQ−KQ̄)

× ∑
a,b,c

1
Q4 Tr

{
L(`,q)⊗Γa(x,pppT)⊗|Hγ∗ a→bc(q, p,KQ,KQ̄)|2

}
, (3.1)

where s = (`+P)2, q = `− `′ is the four-momentum of the exchanged virtual photon with q2 =

−Q2, and the symbol ⊗ denotes appropriate traces over the Lorentz and Dirac indices. The sum
runs over all the partons in the initial and final states, while the leptonic tensor L(`,q) is given by

Lµν(`,q) =−gµν Q2 +2(`µ`′ν + `ν`′µ) , (3.2)

and Hγ∗a→bc is the amplitude for the partonic hard subprocess γ∗a→ bc. At leading order (LO) in
perturbative QCD, only the channel γ∗g→ QQ̄ contributes. By substituting the parameterization
of the gluon correlator, Eq. (2.1), into Eq. (3.1), one obtains, in the γ∗-P center-of-mass frame and
in the specific kinematic configuration in which the quark-antiquark pair is almost back-to-back in

3
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Figure 1: Upper bounds R on |〈cos2(φ⊥− φT )〉| for the process ep→ e′QQ̄X , as a function of |KKK⊥| at
z1 = z2 = 1/2, y= 0.01 and different values of Q2, for charm (left panel) and bottom (right panel) production.

the plane orthogonal to the direction of P and γ∗,

dσ

dyQ dyQ̄ dydxxB d2qqqT d2KKK⊥
=

α2αs

πsM2
⊥

1
xBy2

{
A0 +A1 cosφ⊥+A2 cos2φ⊥

+ qqq2
T

[
B0 cos2(φ⊥−φT)+ B1 cos(φ⊥−2φT) + B′1 cos(3φ⊥−2φT)

+ B2 cos2φT + B′2 cos2(2φ⊥−φT)
]}

δ (1− z1− z2) . (3.3)

In Eq. (3.3), yQ/Q̄ are the rapidities of the final heavy quark/antiquark with mass MQ, z1/2 =

P · KQ/Q̄/P · q, y=P ·q/P ·` and xB is the Bjorken variable. Moreover, we have introduced the sum
and difference of the transverse heavy quark momenta, K⊥ = (KQ⊥−KQ̄⊥)/2 and qT = KQ⊥+KQ̄⊥
with |qT |� |K⊥|. Therefore, we use the approximate transverse momenta KQ⊥ ≈K⊥, KQ̄⊥ ≈−K⊥,
and M2

Q⊥ ≈ M2
Q̄⊥ ≈ M2

⊥ = M2
Q +KKK2

⊥. The azimuthal angles of qqqT and KKK⊥, denoted as φT and φ⊥
respectively, are measured w.r.t. the leptonic plane (φ` = φ`′).

The terms Ai in Eq. (3.3) depend only on one TMD, f g
1 , while B(′)

i depend only on h⊥g
1 ,

and their explicit expressions can be found in Ref. [14]. The different azimuthal modulations in
Eq. (3.3) can be singled out by defining the following weighted cross sections

〈W (φ⊥,φT)〉 ≡
∫

dφ⊥dφT W (φ⊥,φT)dσ∫
dφ⊥dφT dσ

, (3.4)

with W (φ⊥,φT) being one of the circular functions of φ⊥ and φT in Eq. (3.3).
By means of the positivity bound in Eq. (2.2), one can determine the maximum values of the

asymmetries originating from the linear polarization of gluons. For example, the upper bound R on
|〈cos2(φ⊥−φT)〉| is defined as follows:

|〈cos2(φ⊥−φT)〉|=
∣∣∣∣∫ dφ⊥dφT cos2(φ⊥−φT)dσ∫

dφ⊥dφT dσ

∣∣∣∣= qqq2
T |B0|
2A0

=
qqq2

T

2M2
|h⊥g

1 (x, ppp2
T)|

f g
1 (x, ppp2

T)
R ≤ R , (3.5)

and is presented in Fig. 1 as a function of |KKK⊥| (> 1 GeV) for charm (left panel) and bottom (right
panel) production at different values of Q2. We have selected y = 0.01, z1 = z2 = 1/2 and taken
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Figure 2: Same as in Fig. 1, but for the upper bound R′ on cos2φT

M2
c = 2 GeV2, M2

b = 25 GeV2. Similarly, the upper bound R′ on |〈cos2φT〉| is given by

|〈cos2φT〉|=
∣∣∣∣∫ dφ⊥dφT cos2φT dσ∫

dφ⊥dφT dσ

∣∣∣∣= qqq2
T |B2|
2A0

=
qqq2

T

2M2
|h⊥g

1 (x, ppp2
T)|

f g
1 (x, ppp2

T)
R′ ≤ R′ , (3.6)

and shown in Fig. 2 in the same kinematic region as Fig. 1. Note that R′ becomes larger than
R only at small values of |KKK⊥|, but falls off more rapidly than R as |KKK⊥| increases. The size of
these asymmetries, together with the relative simplicity of the proposed measurement that does not
require polarized beams, will likely allow an extraction of h⊥g

1 at a future EIC. On the other hand,
the unpolarized gluon TMD could be easily determined by integrating Eq. (3.3) over φ⊥ and φT .

The cross section for dijet production has the same structure as the one in Eq. (3.3), although
in this case the Ai terms will depend on the partonic process γ∗q→ qg as well. Hence, the upper
bounds on the azimuthal asymmetries can be obtained from those for heavy quark pair production
in the limit MQ→ 0.

4. Higgs plus jet production at the LHC

In addition to the EIC, gluon TMDs can be studied at the LHC as well. For example, inclusive
Higgs production has been analyzed within the TMD factorization approach in Refs. [18, 19] and,
including the effects of QCD evolution, in Refs. [20, 21, 22]. It turns out that the impact of gluon
polarization on the Higgs transverse momentum distribution is of the order of a few percent, at
the energy scale of the Higgs mass MH . Furthermore, such effects are largest when the transverse
momentum of the Higgs boson is small, namely a few GeV, i.e. in a region where the cross section
is difficult to measure. In this section the associated production of a Higgs boson and a jet [15] is
discussed. This process offers some additional features compared to inclusive Higgs production,
when it comes to probe gluon TMDs. First of all, one can study their scale evolution by tuning the
hard scale, identified for example with the invariant mass of the Higgs-jet pair. This is not possible
in Higgs production, for which the hard scale is fixed to be MH . Moreover, one can define angular
modulations that allow to select specific convolutions of TMDs. Finally, h⊥g

1 affects the spectrum
of the Higgs-jet pair mostly at values of the transverse momentum of the pair as small as a few
GeV, but the single transverse momenta of the Higgs boson and the jet can be much larger.
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To LO in perturbative QCD, the reaction p(PA)+ p(PB) → H(KH)+ jet(Kj)+X , with the
Higgs boson and the jet almost back to back in the plane orthogonal to the direction of the ini-
tial protons, proceeds via the following partonic subprocesses: gg→ Hg, gq→ Hq and qq̄→ Hg.
Consider only the channel gg→Hg, which is the dominant one at the LHC energies, and assuming
TMD factorization, the cross section is given by, , similarly to Eq. (3.1),

dσ =
1
2s

d3KKKH

(2π)3 2EH

d3KKKj

(2π)3 2Ej

∫
dxa dxb d2 pppaT d2 pppbT (2π)4

δ
4(pa+pb−KH −Kj)

×Tr
{

Γg(xa,pppaT)⊗Γg(xb,pppbT)⊗
∣∣Hgg→Hg(pa, pb,KH ,Kj)

∣∣2} , (4.1)

where s=(PA+PB)
2. By neglecting terms suppressed by powers of |qqqT |/M⊥, with qqqT =KKKH⊥+KKKj⊥

and M⊥ =
√

M2
H +KKK2

H⊥, the final result in the laboratory frame reads

dσ

σ
=

1
2π

σ0(qqq2
T)
[
1+R0(qqq2

T)+R2(qqq2
T)cos2φ +R4(qqq2

T)cos4φ
]
, (4.2)

where the normalized cross section is given by

dσ

σ
≡ dσ∫ q2

T max
0 dqqq2

T

∫ 2π

0 dφ dσ

, with dσ ≡ dσ

dyH dyj d2KKK⊥ d2qqqT

. (4.3)

In the definition above, yH and y j are, respectively, the rapidities of the produced Higgs boson and
jet along the direction of the incoming protons, KKK⊥ = (KKKH −KKKj)/2 ≈ KKKH⊥ ≈ −KKKj⊥, and φ is the
azimuthal angle between KKK⊥ and qqqT . Moreover, we have introduced

σ0(qqq2
T) =

C [ f g
1 f g

1 ]∫ q2
T max

0 dqqq2
T C [ f g

1 f g
1 ]

, (4.4)

and the convolution of TMDs

C [w f g]≡
∫

d2 pppaT

∫
d2 pppbT δ

2(pppaT + pppbT −qqqT)w(pppaT , pppbT) f (xa, ppp2
aT)g(xb, ppp2

bT) , (4.5)

with xa/b =
(
M⊥ e±yH + |KKKj⊥|e±yj

)
/
√

s, up to corrections of order O(1/s). The terms R0, R2, R4

in Eq. (4.2) are functions of qqq2
T as well as of the Mandelstam variables for the subprocess gg→Hg:

R0(qqq2
T) =

M4
H ŝ2

M8
H + ŝ4 + t̂4 + û4

C [whh
0 h⊥g

1 h⊥g
1 ]

C [ f g
1 f g

1 ]
,

R2(qqq2
T) =

t̂2(t̂ + û)2−2M2
H û2(t̂ + û)+M4

H(t̂
2 + û2)

M8
H + ŝ4 + t̂4 + û4

C [w f h
2 f g

1 h⊥g
1 ]

C [ f g
1 f g

1 ]
+ (xa↔ xb, t̂↔ û) ,

R4(qqq2
T) =

t̂2û2

M8
H + ŝ4 + t̂4 + û4

C [whh
4 h⊥g

1 h⊥g
1 ]

C [ f g
1 f g

1 ]
, (4.6)

where the transverse weights are explicitly given by

whh
0 =

1
M4

p

[
(pppaT · pppbT)

2− 1
2

ppp2
aT ppp2

bT

]
,

w f h
2 =

1
M2

p

[
2
(qqqT · pppbT)

2

qqq2
T

− ppp2
bT

]
, wh f

2 =
1

M2
p

[
2
(qqqT · pppaT)

2

qqq2
T

− ppp2
aT

]
,

whh
4 =

1
2M4

p

{
2
[

2
(qqqT · pppaT)(qqqT · pppbT)

qqq2
T

− pppaT · pppbT

]2

− ppp2
aT ppp2

bT

}
. (4.7)
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Figure 3: Transverse momentum distribution (left panel), cos2φ and cos4φ azimuthal asymmetries (central
and right panels) of the Higgs boson plus jet pair in the process p p→ H jetX for two different choices
of K⊥, with qqq2

Tmax = M2
H/4 and yH = yj. The solid line indicates the H+jet spectrum in absence of linear

polarization. The shaded blue regions represent the range of the three observables as K⊥ varies from 0 to ∞.

By defining the observables [16]

〈cosnφ〉qT ≡
∫ 2π

0 dφ cosnφ dσ

σ
, n = 0,2,4 , (4.8)

such that their integrals over qqq2
T give the average values of cosnφ , with n = 0,2,4,

〈cosnφ〉 ≡
∫ q2

T max
0 dqqq2

T

∫ 2π

0 dφ cosnφ dσ

σ
=
∫ q2

T max

0
dqqq2

T 〈cosnφ〉qT , (4.9)

it is possible to isolate the amplitudes 1+R0, R2, R4 in Eq. (4.2) and access the three different
convolutions of gluon TMDs. One obtains

1
σ

dσ

dqqq2
T

≡ 〈1〉qT = σ0(qqq2
T) [1+R0(qqq2

T)] , (4.10)

〈cos2φ〉qT =
1
2

σ0(qqq2
T)R2(qqq2

T) , (4.11)

〈cos4φ〉qT =
1
2

σ0(qqq2
T)R4(qqq2

T). (4.12)

Predictions for these transverse momentum dependent quantities are presented in Fig. 3 in the
specific configuration in which the Higgs boson and the jet have the same rapidities, yH = yj, and
for two different values of K⊥ ≡ |KKK⊥|, namely 10 and 100 GeV. The so far unknown unpolarized
gluon TMD has been assumed to have the following form [21],

f g
1 (x, ppp2

T) = f g
1 (x)

R2

2π

1
1+ ppp2

T R2 , (4.13)

where R = 2 GeV−1 and f g
1 (x) is the unpolarized gluon distribution, integrated over its transverse

momentum. In order to show the maximal effects of gluon polarization, h⊥g
1 is taken to be positive

and saturating the bound in Eq. (2.2). Moreover, qqq2
Tmax = M2

H/4 [15]. Note that 〈cos2φ〉qT is the
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only observable sensitive to the sign of h⊥g
1 , and it is expected to be negative if h⊥g

1 > 0. It is found
that |〈cos2φ〉| ≈ 12% at K⊥ = 100 GeV, while it is about 0.5% at K⊥ = 10 GeV. Furthermore,
〈cos4φ〉 ≈ 0.2% if K⊥ = 100 GeV and completely negligible at K⊥ = 10 GeV. Analogous results
are obtained if one considers a Gaussian model for f g

1 and maximal gluon polarization [15].
To conclude this section, it is important to mention that the proposed measurements require

high resolution of the transverse momentum of both the Higgs boson and the jet, because one would
need several bins in qT in the kinematic region qT ≤ 10 GeV. In addition, the knowledge of how
well the jet axis coincides with the direction of the fragmenting parton is needed.

5. Quarkonium production in association with a photon in pp collisions

The calculation of the cross section for the process p(PA) + p(PB)→ Q(KQ) + γ(Kγ) +X ,
where Q is a C =− quarkonium (J/ψ or ϒ) with mass MQ, proceeds along the same lines of Higgs
plus jet production presented in the previous section. As before, the imbalance of the quarkonium-
photon pair qqqT = KKKQ⊥+KKKγ⊥ is small, but not the individual transverse momenta KKKQ⊥ and KKKγ⊥.
Therefore no forward detector is needed for the proposed measurements, in contrast to the the
inclusive production of C =+ quarkonia that can also be used to probe gluon TMDs [23, 24, 25].

The resulting cross section dσ ≡ dσ/dQdY d2qqqT dΩ has the following structure [16],

dσ = N
{

F1 C
[

f g
1 f g

1

]
+F2 C

[
w f h

2 f g
1 h⊥g

1 + xa↔xb

]
cos2φ +F4C

[
whh

4 h⊥g
1 h⊥g

1

]
cos4φ

}
, (5.1)

where Q and Y are the invariant mass and the rapidity of the pair, to be measured, like qqqT , in the
hadronic center-of-mass frame. The solid angle Ω = (θ ,φ) is measured in the so-called Collins-
Soper frame [26], defined as the frame in which the final pair is at rest and the x̂ẑ-plane is spanned
by PPPA and PPPB, with the x̂-axis set by their bisector. The normalization factor N is given by

N = 4α
2
s α e2

Q |R0(0)|2
Q2−M2

Q

3sQ3 M3
Q D

, (5.2)

where R0(0) is the radial wave function of the quarkonium evaluated at the origin, eQ is the heavy
quark charge and

D =
[
(α2 +1)2− (α2−1)2 cos2

θ
]2

, (5.3)

with α ≡ Q/MQ. The convolutions of TMDs are defined in Eq. (4.5), with the light-cone momen-
tum fractions xa/b = exp[±Y ]Q/

√
s, the transverse weights are given in Eqs. (4.7) and the F1,2,4

terms read

F1 = 1+2α
2 +9α

4 +(6α
4−2)cos2

θ +(α2−1)2 cos4
θ ,

F2 =−8α
2 sin2

θ , F4 =
1
2
(α2−1)2 sin4

θ . (5.4)

Note that in the derivation of Eq. (5.1), the Color Singlet Model [27] for the quarkonium production
mechanism has been adopted. Color octet contributions [28], which could potentially lead to a
breakdown of TMD factorization, are expected to be small, especially for ϒ− γ production in the
kinematic region described in the caption of Fig. 4 [16].
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Figure 4: The TMD observables S
(0)

qT , S
(2)

qT and S
(4)

qT for the process p(PA)+ p(PB)→ ϒ(PQ)+ γ(Pγ)+X
at
√

s = 14 TeV in the kinematic region defined by Q = 20 GeV, Y = 0, θ = π/2, and xa = xb ' 1.4×10−3.

As in the previous section, the three terms in Eq. (5.1) can be singled out by means of the
observables S

(n)
qT ≡ 〈cosnφ〉qT , with n = 0,2,4, defined in Eq. (4.8), where the cross section in the

denominator is integrated over φ and qqq2
T , up to a value qqq2

Tmax� Q2. One finds

S
(0)

qT =
C [ f g

1 f g
1 ]∫

dqqq2
T C [ f g

1 f g
1 ]
, S

(2)
qT =

F2 C [w f h
2 f g

1 h⊥g
1 + xa↔ xb]

2F1
∫

dqqq2
T C [ f g

1 f g
1 ]

, S
(4)

qT =
F4 C [whh

4 h⊥g
1 h⊥g

1 ]

2F1
∫

dqqq2
T C [ f g

1 f g
1 ]

.

(5.5)

Numerical estimates for these observables are presented in Fig. 4 for ϒ + γ production, where
qqq2

Tmax =Q2/4. In contrast to Higgs plus photon production, h⊥g
1 does not contribute to the spectrum

of the quarkonium-photon pair. Therefore, through a measurement of S
(0)

qT , which turns out to be
sizable, one could determine the shape of f g

1 as a function of qT . Furthermore, since S
(2)

qT and S
(4)

qT

are rather small, it would be needed to integrate them over qqq2
T , e.g. up to Q2/4, to get at least an

experimental evidence of a nonzero linear polarization of gluons [16].

6. Summary and conclusions

The unpolarized and linearly polarized gluon TMDs of an unpolarized proton could be probed
in future EIC experiments by looking at the transverse momentum distributions and azimuthal
asymmetries of heavy quark and jet pairs. At the LHC complementary information can be gath-
ered by similar analyses for processes like pp→ H jetX , pp→ J/ψ(ϒ)γ X , presented in detail in
this contribution, or like pp→ γ γ X , proposed in Ref. [29] specifically for RHIC and for which
factorization breaking terms should be absent.

Although TMDs are not universal, their process dependence can be calculated. For instance,
despite the different gauge link structures, it has been found that in ep→ e′QQ̄X and in all the
processes with a colorless final state, like pp→ γ γ X , pp→ H X and pp→ ηc,b X , one always
probes the same effective distribution of linearly polarized gluons, given by the sum of two of the
five universal h⊥g

1 functions [14, 30]. This restricted universality needs to be tested experimentally,
using LHC or RHIC data. On the other hand, the gauge link structure for pp→ H jetX is much
more complicated and still has to be investigated. It is therefore of great interest to compare the
extractions of gluon TMDs from different processes, in order to learn about their process and energy
scale dependences, as well as the size and importance of possible factorization breaking effects.
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