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1. Introduction

The “naive” definition of transverse momentum dependent distributions (TMDs) introduced
in [1, 2] and considered in subsequent works, suffers from undesired uncancelled spurious rapidity
divergences. The definition of quark TMDs have been recently revisited and updated by Collins [3]
and Echevarria-Idilbi-Scimemi [4, 5] (at two loops in Refs. [6, 7]). And it is the goal of this
contribution to present the extension to gluon TMDs performed in Ref. [8], relevant for instance in
processes such as Higgs boson and quarkonium production in hadron-hadron collisions.

To do so, the Higgs qT -distribution in hadron-hadron collisions is considered, with general
polarizations, in order to obtain the proper definition for all the leading-twist (un)polarized gluon
TMDPDFs. This is crucial to be able to address different processes where they are relevant and
perform consistent phenomenological analyses. The cancellation of rapidity divergences is explic-
itly shown at next-to-leading order (NLO) for the gluon helicity TMDPDF, which represents the
distribution of longitudinally polarized gluons inside a longitudinally polarized hadron.

The evolution of the gluon TMDPDFs, as in the case of quark TMDs [9], turns out to be univer-
sal, i.e., the same evolution kernel describes the evolution of any of the leading-twist (un)polarized
gluon TMDPDFs. This finding is used to quantify the role of linearly polarized gluons inside unpo-
larized hadrons (see, e.g., [10, 11, 12, 13, 14]), extending the efforts in Ref. [15] by implementing
the resummation of large logarithms at next-to-next-to-leading-logarithmic (NNLL) accuracy, pro-
viding more accurate predictions and discussing their uncertainty.

2. Higgs boson qT -spectrum and definition of gluon TMDPDFs

Below we sketch the derivation of the factorization theorem for the Higgs qT -distribution in
polarized hadron-hadron collisions, A(P,SA)+B(P̄,SB)→ H(mH ,qT )+X , by performing a set of
consecutive matchings between different effective field theories, relevant at each scale:

QCD(n f = 6)→ QCD(n f = 5)→ SCETqT → SCETΛQCD .

More details can be found in Ref. [8]. In the first step we integrate out the top quark mass, mt , to
build an effective ggH coupling. In the second matching we integrate out the mass of the Higgs
boson, mH , and obtain a factorized cross-section in terms of well-defined gluon TMDPDFs, which
holds for qT � mH . Those gluon TMDPDFs will be expressed in terms of fundamental hadronic
matrix elements. Finally, in the region ΛQCD � qT � mH , we can further refactorize the gluon
TMDPDFs in terms of the collinear gluon/quark PDFs, integrating out the large scale qT .

After performing the first two matchings, the cross-section can be written as

dσ

dyd2q⊥
= 2σ0(µ)C2

t (m
2
t ,µ)H(mH ,µ)(2π)2

∫
d2kn⊥d2kn̄⊥d2ks⊥ δ

(2) (q⊥− kn⊥− kn̄⊥− ks⊥)

× J(0)µν
n (xA,kn⊥,SA; µ)J(0)n̄ µν(xB,kn̄⊥,SB; µ)S(ks⊥; µ)+O(qT/mH) , (2.1)

where C2
t (m

2
t ,µ) and H(m2

H ,µ) are the Wilson coefficients that integrate out the top quark and
Higgs masses, respectively. xA,B =

√
τ e±y, τ = (m2

H +q2
T )/s and y is the rapidity of the produced
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Higgs boson. The Born-level cross section is σ0(µ) = m2
H α2

s (µ)/(72π(N2
c − 1)sv2). The pure

collinear matrix elements and the soft function are defined as

J(0)µν
n (xA,kn⊥,SA; µ) =

xAP+

2

∫ dy−d2y⊥
(2π)3 e−i( 1

2 xAy−P+−y⊥·kn⊥)

×∑
Xn

〈PSA|Bµ,a
n⊥ (y

−,y⊥) |Xn〉 〈Xn|Bν ,a
n⊥ (0) |PSA〉 ,

J(0)µν

n̄ (xB,kn̄⊥,SB; µ) =
xBP̄−

2

∫ dy+d2y⊥
(2π)3 e−i( 1

2 xBy+P̄−−y⊥·kn̄⊥)

×∑
Xn̄

〈P̄SB|Bµ,a
n̄⊥ (y

+,y⊥) |Xn̄〉 〈Xn̄|Bν ,a
n̄⊥ (0) |P̄SB〉 ,

S(ks⊥; µ) =
1

N2
c −1 ∑

Xs

∫ d2y⊥
(2π)2 eiy⊥·ks⊥ 〈0|

(
S †

n Sn̄
)ab

(y⊥) |Xs〉 〈Xs|
(
S †

n̄ Sn
)ba

(0) |0〉 .

(2.2)

In Ref. [8] one can find the particular definitions of the collinear and soft Wilson lines and the
SCET fields.

As shown explicitly at NLO in Ref. [8], for unpolarized, linearly polarized and helicity gluon
TMDPDFs, the collinear and soft matrix elements defined above are individually ill-defined, since
they contain spurious rapidity divergences. Then, based on Refs. [4, 5, 9, 3], and using ηn(n̄) to
label generic parameters that regulate the rapidity divergences present in the (anti-)collinear and
soft matrix elements, we define the TMDPDFs as

G̃µν

g/A(xA,b⊥,SA;ζA,µ) = J̃(0)µν
n (xA,b⊥,SA; µ;ηn) S̃−(bT ; µ;ηn) ,

G̃µν

g/B(xB,b⊥,SB;ζB,µ) = J̃(0)µν

n̄ (xB,b⊥,SB; µ;ηn̄) S̃+(bT ; µ;ηn̄) . (2.3)

Here ζA,B represent auxiliary rapidity scales, the twiddle labels the functions in coordinate space
and we have split the soft function in rapidity space as [5]

S̃(bT ; µ;ηn,ηn̄) = S̃− (bT ; µ;ηn) S̃+ (bT ; µ;ηn̄) . (2.4)

The arbitrariness in the choice of the rapidity cutoff to split the soft function, which is not explicitly
shown in the above equation, manifests itself as the appearance of the auxiliary energy scales ζA

and ζB, which are bound together by ζAζB = q4 = m4
H . With properly defined gluon TMDPDFs,

the cross-section for the Higgs qT -distribution is now given by:

dσ

dyd2q⊥
= 2σ0(µ)C2

t (m
2
t ,µ)H(m2

H ,µ)
1

(2π)2

∫
d2y⊥ eiq⊥·y⊥

× G̃µν

g/A(xA,y⊥,SA;ζA,µ) G̃g/B µν(xB,y⊥,SB;ζB,µ)+O(qT/mH) . (2.5)

3. Evolution and refactorization of gluon TMDPDFs

The evolution kernel that we derive below implements the evolution of the TMDs with respect
to the two scales that they depend on: the renormalization scale µ and the rapidity scale ζ .

3
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On one hand, the evolution in terms of the renormalization scale µ is governed by the anoma-
lous dimension:

d
dlnµ

lnG̃[pol]
g/A (xA,b⊥,SA;ζA,µ)≡ γG

(
αs(µ), ln

ζA

µ2

)
, (3.1)

where

γG

(
αs(µ), ln

ζA

µ2

)
=−Γ

A
cusp(αs(µ))ln

ζA

µ2 − γ
nc(αs(µ)) , (3.2)

and G̃[pol]
g/A represents any of the eight leading-twist (un)polarized gluon TMDPDFs in coordinate

space. The coefficients of the perturbative expansions of Γcusp and γV are known up to three loops.
On the other hand, the evolution equation in ζ is given by

d
dlnζA

lnG̃[pol]
g/A (xA,b⊥,SA;ζA,µ) =−Dg(bT ; µ) . (3.3)

At small bT the Dg term can be calculated perturbatively, but at large bT it has to be modelled and
extracted from experimental data. Notice that both the anomalous dimension γG and the Dg term
drive the evolution of all (un)polarized gluon TMDs.

Given the currently known perturbative ingredients, and regardless of how the non-perturbative
tail of the Dg term is modelled, we can perform the evolution of all leading-twist gluon TMDPDFs
consistently up to NNLL:

G̃[pol]
g/A (xA,b⊥,SA;ζA, f ,µ f ) = G̃[pol]

g/A (xA,b⊥,SA;ζA,i,µi) R̃g (bT ;ζA,i,µi,ζA, f ,µ f ) , (3.4)

where the evolution kernel R̃g is

R̃g(bT ;ζA,i,µi,ζA, f ,µ f
)
= exp

{∫
µ f

µi

dµ̄

µ̄
γG

(
αs(µ̄), ln

ζA, f

µ̄2

)}(
ζA, f

ζA,i

)−Dg(bT ;µi)

. (3.5)

When the transverse momentum is perturbative, the TMDPDFs can be expressed, by perform-
ing an operator product expansion (OPE), in terms of collinear functions, integrating out the large
transverse momentum by means of Wilson coefficients. This OPE can be written in general, for
bT � Λ

−1
QCD, as

F̃g/A(xA,bT ;ζA,µ) = ∑
j=q,q̄,g

C̃g/ j(xA,bT ;ζA,µ)⊗ f j/A(xA; µ)+O(bT ΛQCD) , (3.6)

where F̃g/A represents any of the leading-twist (un)polarized (renormalized) gluon TMDPDFs, and
f j/A the corresponding (renormalized) collinear quark/gluon distributions. The coefficients C̃g/ j

are different for each case. The convolution refers to momentum fraction x for TMDPDFs that
are matched onto twist-2 collinear functions (like the unpolarized distribution f g

1 ), while in the
case of TMDPDFs that are matched onto twist-3 functions (like the gluon Sivers function f⊥g

1T ) it
would represent a two-dimensional convolution in the two momentum fractions of the collinear
function. The natural scale for the coefficients C̃g/ j is µ ∼ 1/bT ∼ qT , which is the large scale that
we integrate out through the OPE.

4



P
o
S
(
Q
C
D
E
V
2
0
1
5
)
0
2
5

Phenomenology of gluon TMDs at NNLL Miguel G. Echevarria

Performing the resummation of large logarithms in impact parameter space, the resummed
TMDPDF is written as:

F̃Pert
g/A (xA,bT ;ζA,µ) = exp

{∫
µ

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

ζA

µ̄2

)} (
ζA

ζ0

)−Dg(bT ;µ0)

× ∑
j=q,q̄,g

C̃g/ j(xA,bT ;ζ0,µ0)⊗ f j/A(xA; µ0) , (3.7)

where ζ0 ∼ µ2
b and µ0 ∼ µb. The superscript Pert signifies that it is only valid in the perturbative

region bT << 1/ΛQCD. For large bT we need to model them and extract them from experimental
data. To do so, one could implement a smooth cutoff that freezes the perturbative contribution
slowly as bT gets larger:

F̃g/A(xA,bT ;ζA,µ) = F̃Pert
g/A (xA, b̂T ;ζA,µ) F̃NP(xA,bT ;ζA) , (3.8)

where the cutoff prescription could be, for instance:

b̂T (bT ) = bc

(
1− e−(bT /bc)

n
)1/n

, (3.9)

with n an integer number and bc the parameter that determines the separation between the per-
turbative and non-perturbative regions. With this implementation, the perturbative contribution
dominates at small bT , while it gets frozen as bT increases. The non-perturbative model F̃NP is
constrained to be 1 for bT = 0, and plays an increasingly important role as bT increases.

4. Gluon helicity TMDPDF

The gluon helicity TMDPDF, gg
1L, represents the distribution of longitudinally polarized glu-

ons inside a longitudinally polarized hadron. Here we explicitly show that, if properly defined as
in Eq. (2.3), then rapidity divergences cancel among the collinear and soft matrix elements. We
use dimensional regularization with the MS-scheme (µ2→ µ2eγE/(4π)) for ultra-violet (UV) di-
vergences and the ∆-regulator [4] for IR and rapidity divergences. More details can be found in
Ref. [8]

The collinear matrix element for the partonic channel of a gluon splitting into a gluon, at NLO,
is

J̃g/g
1 =

αs

2π

[
δ (1− x)

(
β0

2εUV
+

2CA

εUV
ln

∆

Q2

)
+2CAδ (1− x)LT ln

∆

Q2 −LT

(
P∆g/∆g−δ (1− x)

β0

2

)
+ ln

µ2

∆
P∆g/∆g−2CA

[
(1− x)(1+ x2)

x
− (1− x)3

x

]
ln(1− x)−2CA

(
ln(1− x)

1− x

)
+

+δ (1− x)
(
−π2

2
CA +

17
9

CA−
2
9

n f

)]
. (4.1)

5
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The mixed divergences in the result above ( 1
εUV

ln∆) are rapidity divergences, which are eliminated
by subtracting half of the soft function (subtracting and not adding because we need to take care of
the double counting of the soft region), which at NLO is:

S̃1 =
αsCA

2π

[
− 2

ε2
UV

+
2

εUV
ln

∆2

µ2Q2 +L2
T +2LT ln

∆2

µ2Q2 +
π2

6

]
. (4.2)

The final result for gluon helicity TMDPDF at NLO is then

g̃g/g
1L =

αs

2π

{
δ (1− x)

[
CA

ε2
UV

+
1

εUV

(
β0

2
+CAln

µ2

ζ

)]
−LT

[
P∆g/∆g−

β0

2
δ (1− x)

]
+CAδ (1− x)

(
−1

2
L2

T +LT ln
µ2

ζ
− π2

12

)
δ (1− x)+P∆g/∆gln

µ2

∆
+δ (1− x)

[
17
9

CA−
2
9

n f

]
−2CA

[
(1− x)(1+ x2)

x
− (1− x)3

x

]
ln(1− x)−2CA

(
ln(1− x)

1− x

)
+

−CA
π2

2
δ (1− x)

}
. (4.3)

As anticipated, in this result all rapidity divergences have disappeared. The only ∆-dependence, in
the second line, parametrizes the infra-red long-distance physics.

Below we illustrate the effect of QCD evolution on gluon helicity TMDPDF, which is imple-
mented as

g̃g
1L(xA,bT ;Q2,Q) = exp

{∫ Q

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

Q2

µ̄2

)} (
Q2

ζ0

)−Dg(b̂T ;µ0)

× ∑
j=q,q̄,g

∫ 1

xA

dx̄
x̄

C̃g
g/ j(x̄, b̂T ;ζ0,µ0)g j/A(xA/x̄; µ0) F̃NP

j/A(xA,bT ;Q) . (4.4)

The Wilson coefficients C̃g
g/ j are calculated at NLO, for the first time, in Ref. [8]. Here we choose

ζ0 ∼ µ2
0 ∼ µ2

b , and in order to separate the perturbative and non-perturbative regions we implement
the b̂T prescription

b̂T (bT ) = bc

(
1− e−(bT /bc)

2
)1/2

, bc = 1.5 GeV−1 , (4.5)

with a simple non-perturbative model

F̃NP
j/A(xA,bT ;Q) = exp

[
−b2

T (λg +λQln(Q2/Q2
0))
]
, Q0 = 1 GeV . (4.6)

The parameters λg and λQ have never been extracted from experimental data. However λQ is the
same among all (un)polarized gluon TMDPDFs, because it parametrizes the scale-dependent part
of the non-perturbative model, which is related to the large-bT tail of the universal Dg function.

Fig. 1(a) shows the gluon helicity TMDPDF at Q = 20 GeV, with some particular choice of the
non-perturbative parameters and collinear gluon and quark helicity PDFs obtained from Ref. [16].
It is clear that the theoretical uncertainty gets reduced as we increase the resummation accuracy. In
Fig. 1(b) shows the effect of the QCD evolution on gluon helicity TMDPDF for a different choice
of non-perturbative parameters. As can be seen, the larger the scale, the wider is the distribution.

6
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Figure 1: (a): The gluon helicity TMDPDF gg
1L at Q = 20 GeV, x = 0.01 and with the non-perturbative

parameters chosen to be λg = 0.3 and λQ = 0.1. The bands come from varying independently both the
resummation scale µ0 and the rapidity scale ζ0 by a factor of 2 around their default value, and taking the
maximum variation. (b): The gluon helicity TMDPDF gg

1L at x = 0.01 for different values of the evolution
scale and the non-perturbative parameters, at

√
s = 8 TeV. All curves are given at NNLL accuracy.

5. Gluon TMDPDFs in an unpolarized hadron

There are two gluon distributions that contribute at leading-twist in the case of an unpolarized
hadron: the unpolarized ( f g

1 ) and the linearly polarized (h⊥g
1 ) ones. The latter was introduced in

[17] and implemented for the first time in the resummation of gluon-gluon fusion process in impact
parameter space in [18, 19]. As described in the previous section for the gluon helicity TMDPDF,
both f g

1 and h⊥g
1 in the small bT region can be factorized in terms of collinear functions, which in

this case are just the unpolarized collinear gluon/quark PDFs:

f̃ g/A
1 (xA,bT ;Q2,Q) = exp

{∫ Q

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

Q2

µ̄2

)} (
Q2

ζ0

)−Dg(bT ;µ0)

× ∑
j=q,q̄,g

∫ 1

xA

dx̄
x̄

C̃ f
g/ j(x̄,bT ;ζ0,µ0) f j/A(xA/x̄; µ0)+O(bT ΛQCD) ,

h̃⊥g/A(2)
1 (xA,bT ;Q2,Q) = exp

{∫ Q

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

Q2

µ̄2

)} (
Q2b2

T

4e−2γE

)−Dg(bT ;µ0)

× ∑
j=q,q̄,g

∫ 1

xA

dx̄
x̄

C̃h
g/ j(x̄,bT ;ζ0,µ0) f j/A(xA/x̄; µ0)+O(bT ΛQCD) . (5.1)

The perturbative coefficients C̃ f ,h
g/ j are given in Ref. [8].

The contribution of unpolarized and/or linearly polarized gluon distributions in unpolarized
hadron-hadron collisions depends on the process under study and has been discussed in several
works [10, 12, 13, 14, 15]. In this work we focus on the production of Higgs boson and C-even
pseudoscalar bottonium state ηb [20], since for the production of P-wave quarkonium states (like
χb0) there are arguments that suggest a breaking of the factorization [21]. In the considered cases,
Higgs boson and ηb production, both unpolarized and linearly polarized distributions play a role,
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Figure 2: Ratio R for different values of the non-perturbative parameters λ f (h) and λQ, at the relevant
scales for Higgs boson and ηb production. The curves are calculated at NNLL accuracy and for

√
s = 8 TeV.

The bands come from varying independently both the resummation scale µ0 and the rapidity scale ζ0 by a
factor of 2 around their default value, and taking the maximum variation. Notice the differences in scales on
the vertical axes.

and thus one can investigate their relative contribution to the cross-section. We use our results to
quantify the contribution of linearly polarized gluons, considering the following ratio:

R(xA,xB,qT ;Q) =

∫
d2bT e−iqT ·bT h̃⊥g/A(2)

1 (xA,bT ;Q2,Q) h̃⊥g/B(2)
1 (xB,bT ;Q2,Q)∫

d2bT e−iqT ·bT f̃ g/A
1 (xA,bT ;Q2,Q) f̃ g/B

1 (xB,bT ;Q2,Q)
, (5.2)

where the numerator and denominator are the two terms in the factorized cross section which de-
termine the relative contributions from linearly polarized and unpolarized gluons, for both Higgs
boson and C-even pseudoscalar bottonium production. In order to compute this quantity we choose
ζ0 ∼ µ2

0 ∼ µ2
b and use the b̂T prescription to separate the perturbative from non-perturbative con-

tributions as in Eq. (4.5). The latter will be parametrized as:

F̃ f ,NP
j/A (xA,bT ;Q) = exp

[
−b2

T (λ f +λQln(Q2/Q2
0))
]
, Q0 = 1 GeV ,

F̃h,NP
j/A (xA,bT ;Q) = exp

[
−b2

T (λh +λQln(Q2/Q2
0))
]
, Q0 = 1 GeV . (5.3)

Notice that the parameter λQ is the same for both functions, since the evolution is universal among
all (un)polarized TMDPDFs, that is, their scale-dependence is the same. Having precise estimates
for this ratio will help us predict the measurability of both unpolarized and linearly polarized gluon
distributions in a given process (or scale), which is the final goal.

In Fig. 2 we show our results for the ratio R at the relevant scales for the transverse momentum
distributions of Higgs boson and ηb, all at NNLL accuracy, and for different values of the non-
perturbative parameters. Comparing our results to the ones presented in [15], we have included
the contribution of quark PDFs to the collinear expansion of gluon TMDPDFs (through C̃ f ,h

g/q in
Eq. (5.1)), performed the resummation consistently at NNLL accuracy and produced consistent
uncertainty bands to address the theoretical error. The outcome of the numerical study is clear:
the lower the scale the more contribution we have from linearly polarized gluons, although this
contribution depends on the value of the non-perturbative parameters, which will have to be fixed
by fitting experimental data.
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6. Summary

We have derived the factorization theorem for the Higgs boson transverse momentum distribu-
tion in hadron-hadron collisions with general polarizations, A(P,SA)+B(P̄,SB)→H(mH ,qT )+X ,
using the effective field theory methodology. By doing so, we have provided the proper defini-
tion of all the leading-twist (un)polarized gluon TMDPDFs, combining adequately the relevant
collinear and (part of) soft matrix elements, in order to cancel the spurious rapidity divergences.

The evolution of all leading-twist (un)polarized gluon TMDPDFs is universal, and the cur-
rently known perturbative ingredients allow the resummation of large logarithms contained in this
evolution kernel up to NNLL accuracy.

We have obtained, for the first time, the NLO Wilson coefficient for the gluon helicity TMD-
PDF gg

1L, which will allow more accurate phenomenological studies of this quantity in the future,
e.g., at RHIC, AFTER@LHC or EIC. We have also obtained the OPE Wilson coefficients for f g

1
and h⊥g

1 in the framework presented in this paper. Using these results, we have performed a nu-
merical study of the contribution of linearly polarized gluons for the productions of ηb and Higgs
boson in unpolarized hadron-hadron collisions. The major conclusion is that the larger the relevant
hard scale is, the less sensitive is the observable to their non-perturbative contribution, and therefor
harder to extract.
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