PROCEEDINGS OF SCIENCE

TMD Evolution at Moderate Hard Scales

Ted C. Rogers*

Department of Physics, Old Dominion University, Norfolk, VA 23529, USA and Theory Center, Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606, USA *E-mail:* trogers@odu.edu

John Collins

104 Davey Lab., Penn State University, University Park PA 16802, USA E-mail: jcc8@psu.edu

We summarize some of our recent work on non-perturbative transverse momentum dependent (TMD) evolution, emphasizing aspects that are necessary for dealing with moderately low scale processes like semi-inclusive deep inelastic scattering.

PoS.cls, January 11, 2016, JLAB-THY-16-2196, DOE/OR/23177-3644

QCD Evolution 2015 -QCDEV2015-26-30 May 2015 Jefferson Lab (JLAB), Newport News Virginia, USA

*Speaker.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. TMD factorization and non-perturbative evolution

The purpose of this talk is to summarize results recently presented in Ref. [1]. We will discuss the Collins-Soper-Sterman (CSS) form of TMD factorization in the updated version presented in Ref. [2]. (See Ref. [3] for a general overview and for references.) For these proceedings, the relevant aspects of the TMD factorization theorems are the following:

• The unpolarized cross section for a process like Drell-Yan scattering is expressible as

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^{4}q\,\mathrm{d}\Omega} = \frac{2}{s} \sum_{j} \frac{\mathrm{d}\hat{\sigma}_{j\bar{j}}(\mathcal{Q},\mu\to\mathcal{Q};\alpha_{s}(\mathcal{Q}))}{\mathrm{d}\Omega} \int \mathrm{d}^{2}\mathbf{b} \ e^{i\mathbf{q}_{\mathrm{T}}\cdot\mathbf{b}} \ \tilde{F}_{j/A}(x_{A},\mathbf{b};\mathcal{Q}^{2},\mathcal{Q}) \ \tilde{F}_{\bar{j}/B}(x_{B},\mathbf{b};\mathcal{Q}^{2},\mathcal{Q}) + \text{large } q_{\mathrm{T}} \text{ "Y-term" correction.}$$
(1.1)

where $d\hat{\sigma}_{j\bar{j}}/d\Omega$ is a hard partonic cross section and $\tilde{F}(x, \mathbf{b}; Q^2, Q)$ is a TMD parton distribution function (PDFs) in coordinate space evaluated with a hard scale Q.

• Collins-Soper (CS) evolution applied to an individual TMD PDF leads to

$$\frac{\partial}{\partial \ln Q} \ln \tilde{F}_{j/A}(x_A, \mathbf{b}_{\mathrm{T}}; Q^2, Q) = \tilde{K}(b_{\mathrm{T}}; Q) + b_{\mathrm{T}} \text{ Independent Terms}$$
(1.2)

The " $b_{\rm T}$ Independent Terms" only affect the *normalization* of \tilde{F} but not its shape.

- The kernel $\tilde{K}(b_T; Q)$ is is strongly universal. At small b_T its b_T -dependence is perturbatively calculable with $1/b_T$ acting as a hard scale. At large b_T its b_T -dependence is non-perturbative.
- For all b_T , $\tilde{K}(b_T; Q)$ obeys the renormalization group (RG) equation:

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}\tilde{K}(b_{\mathrm{T}};\mu) = -\gamma_{K}\left(\alpha_{s}(\mu)\right). \tag{1.3}$$

At small $b_{\rm T}$, one hopes to exploit perturbation theory with $1/b_{\rm T}$ as a hard scale to calculate $\tilde{K}(b_{\rm T};Q)$ while at large $b_{\rm T}$ a non-perturbative parametrization is needed. In the non-perturbative region, one hopes to exploit the strong universality of $\tilde{K}(b_{\rm T};Q)$ to make predictions. One needs a prescription to demarcate what constitutes large and small $b_{\rm T}$. To smoothly interpolate between the two regions, one imposes a gentle cutoff on large $b_{\rm T}$. A common choice of cutoff function is

$$\mathbf{b}_{*}(\mathbf{b}_{\mathrm{T}}) = \frac{\mathbf{b}_{\mathrm{T}}}{\sqrt{1 + b_{\mathrm{T}}^{2}/b_{\mathrm{max}}^{2}}}.$$
 (1.4)

Then an RG scale defined as $\mu_{b_*} \equiv C_1/b_*$ approaches C_1/b_T at small b_T and C_1/b_{max} at large b_T . We can separate $\tilde{K}(b_T;Q)$ into a large b_T part and a small b_T part by adding and subtracting $\tilde{K}(b_*;Q)$ in Eq. (1.2):

$$\frac{\partial}{\partial \ln Q} \ln \tilde{F}_{j/A}(x_A, \mathbf{b}_{\mathrm{T}}; Q^2, Q) = \tilde{K}(b_*; Q) + \left[\tilde{K}(b_{\mathrm{T}}; Q) - \tilde{K}(b_*; Q)\right] + b_{\mathrm{T}} \text{ Independent Terms.}$$
(1.5)

The $g_K(b_T; b_{max})$ function is defined as the term $\tilde{K}(b_T; Q) - \tilde{K}(b_*; Q)$, so that

$$\frac{\partial}{\partial \ln Q} \ln \tilde{F}_{j/A}(x_A, \mathbf{b}_{\mathrm{T}}; Q^2, Q) = \tilde{K}(b_*; Q) - g_K(b_{\mathrm{T}}; b_{\mathrm{max}}) + b_{\mathrm{T}} \text{ Independent Terms}.$$
(1.6)

By definition, the right side of Eq. (1.6) is exactly independent of b_{max} . From Eq. (1.3), $g_K(b_T; b_{\text{max}})$ is also exactly independent of Q. The Q dependence in each of the terms in the definition of $g_K(b_T; b_{\text{max}})$ cancels. We can apply Eq. (1.3) to exploit RG improvement in the calculation of $\tilde{K}(b_*; Q)$:

$$\tilde{K}(b_{*};Q) = \tilde{K}(b_{*};\mu_{b_{*}}) - \int_{\mu_{b_{*}}}^{Q} \frac{\mathrm{d}\mu'}{\mu'} \gamma_{K}(\alpha_{s}(\mu')).$$
(1.7)

So, the evolution of the *shape* of $\tilde{F}_{j/A}(x_A, \mathbf{b}_T; Q^2, Q)$ is is given by

$$\frac{\partial}{\partial \ln Q} \ln \tilde{F}_{j/A}(x_A, \mathbf{b}_{\mathrm{T}}; Q^2, Q)$$

= $\tilde{K}(b_*; \mu_{b_*}) - \int_{\mu_{b_*}}^{Q} \frac{\mathrm{d}\mu'}{\mu'} \gamma_K(\alpha_s(\mu')) - g_K(b_{\mathrm{T}}; b_{\mathrm{max}}) + b_{\mathrm{T}}$ Independent Terms. (1.8)

The partial derivative symbol means x_A is to be held fixed. The $g_K(b_T; b_{max})$ function inherits the universality properties of $\tilde{K}(b_T; \mu)$. In particular, it is related to the *vacuum* expectation value of a relatively simple Wilson loop. It is independent of any details of the process and is even the same if the PDF $\tilde{F}_{j/A}(x_A, \mathbf{b}_T; Q^2, Q)$ is replaced with a fragmentation function. Thus we say that $g_K(b_T; b_{max})$ is "strongly" universal; see the graphic in Fig. 1. The $g_K(b_T; b_{max})$ function is often called the "non-perturbative" part of the evolution since it can contain non-perturbative elements. This is a slight misnomer, however, since $g_K(b_T; b_{max})$ can contain perturbative contributions as well. Indeed, at very small b_T it is entirely perturbatively calculable, though suppressed by powers of b_T/b_{max} , according to its definition in Eq. (1.5).

2. Large *b*_T behavior

A common choice for non-perturbative parametrizations of $g_K(b_T; b_{max})$ is a power-law form. These tend to yield reasonable success in fits that involve at least moderately high scales Q [4]. However, extrapolations of those fits to lower values of Q (such as those corresponding to many current SIDIS experiments) appear to appear to produce evolution that is far too rapid [5, 6]. In this talk, we carefully examine the underlying physics issues surrounding non-perturbative evolution and, on the basis of those considerations, we will propose a form for $g_K(b_T; b_{max})$ that accommodates both large and small Q behavior.

We will first write down our proposed ansatz for $g_K(b_T; b_{max})$ and then spend the remainder of the talk discussing its justifications. Our proposal is

$$g_{K}(b_{\rm T};b_{\rm max}) = g_{0}(b_{\rm max}) \left(1 - \exp\left[-\frac{C_{F}\alpha_{s}(\mu_{b_{*}})b_{\rm T}^{2}}{\pi g_{0}(b_{\rm max})b_{\rm max}^{2}}\right]\right), \qquad (2.1)$$

where

$$g_0(b_{\max}) = g_0(b_{\max,0}) + \frac{2C_F}{\pi} \int_{C_1/b_{\max,0}}^{C_1/b_{\max,0}} \frac{\mathrm{d}\mu'}{\mu'} \alpha_s(\mu') \,. \tag{2.2}$$

Figure 1: Strong universality of the non-perturbative evolution parametrized by $g_K(b_T; b_{max})$. The $-g_K(b_T; b_{max}) \ln(Q/Q_0)$ combination appears exponentiated in the evolved cross section expression.

The only parameter of the model is $g_0(b_{\text{max}})$ and it varies with b_{max} according to Eq. (2.2). $b_{\text{max},0}$ is a boundary value for g_0 relative to which other values are determined.

First, note that the a small $b_{\rm T}/b_{\rm max}$ expansion of Eq. (2.1) gives

$$g_{K}(b_{\rm T};b_{\rm max}) = \frac{C_F}{\pi} \frac{b_{\rm T}^2}{b_{\rm max}^2} \alpha_s(\mu_{b_*}) + O\left(\frac{b_{\rm T}^4 C_F^2 \alpha_s(\mu_{b_*})^2}{b_{\rm max}^4 \pi^2 g_0(b_{\rm max})}\right),$$
(2.3)

while an expansion of the exact definition of $-g_K(b_T; b_{max})$ in Eq. (1.5) is

$$g_{K}(b_{T}; b_{\max}) = -\tilde{K}(b_{T}; \mu_{b_{*}}; \alpha_{s}(\mu_{b_{*}})) + \tilde{K}(b_{*}; \mu_{b_{*}}; \alpha_{s}(\mu_{b_{*}}))$$

$$= \frac{C_{F}}{\pi} \frac{b_{T}^{2}}{b_{\max}^{2}} \alpha_{s}(\mu_{b_{*}}) + O\left(\frac{b_{T}^{4}}{\pi^{2}b_{\max}^{4}} \alpha_{s}(\mu_{b_{*}})^{2}\right)$$
(2.4)

So, the exact definition and Eq. (2.1) match in the small $b_{\rm T}$ limit.

3. Conditions on $g_K(b_T; b_{max})$

Our description of the large b_T limit of correlation functions like $\tilde{F}(x_A, \mathbf{b}_T; Q^2, Q)$ is motivated by the general observation that the analytic properties of correlation functions imply an exponential coordinate dependence, with a possible power-law fall-off, for the large $b_{\rm T}$ limit. That is, neglecting perturbative contributions,

$$\tilde{F}(x_A, \mathbf{b}_{\mathrm{T}}; Q^2, Q) \overset{b_{\mathrm{T}} \to \infty}{\sim} \frac{1}{b_{\mathrm{T}}} e^{-mb_{\mathrm{T}}}, \qquad (3.1)$$

with *m* and α independent of *Q*. See, for example, Ref. [7]. Therefore, from Eq. (1.2), $\tilde{K}(b_T; Q)$ must approach a b_T -independent constant at large b_T .

The set of requirements on $g_K(b_T; b_{max})$ is

- 1. $\tilde{K}(b_{\mathrm{T}};\mu_{b_*}) \stackrel{b_{\mathrm{T}}\to 0}{=} \tilde{K}(b_{\mathrm{T}};C_1/b_{\mathrm{T}})$ is calculable entirely in perturbation theory with C_1/b_{T} playing the role of a hard scale.
- 2. $\tilde{K}(b_{\rm T};Q)$ approaches a constant at $b_{\rm T}/b_{\rm max} \to \infty$. The constant can be *Q*-dependent, but the *Q*-dependence can be calculated perturbatively for all $b_{\rm T}$ from Eq. (1.3).
- 3. Because of item 2, $g_K(b_T; b_{max})$ must approach a constant at large b_T , but the constant depends on b_{max} .
- 4. At small $b_{\rm T}$, $g_K(b_{\rm T}; b_{\rm max})$ is a power series in $(b_{\rm T}/b_{\rm max})^2$ with perturbatively calculable coefficients, as in Eqs. (2.3,2.4).
- 5. By definition, the right side of Eq. (1.8) is independent of b_{max} and this should be preserved as much as possible in the functional form that parametrizes $g_K(b_T; b_{\text{max}})$. For small b_T , this means

$$\sup_{b_{\rm T} \ll b_{\rm max}} \left. \frac{\mathrm{d}}{\mathrm{d}b_{\rm max}} g_K(b_{\rm T}; b_{\rm max}) \right|_{\rm parametrized} = \left. \sup_{b_{\rm T} \ll b_{\rm max}} \left. \frac{\mathrm{d}}{\mathrm{d}b_{\rm max}} g_K(b_{\rm T}; b_{\rm max}) \right|_{\rm truncated PT}$$
(3.2)

where "parametrized" refers to a specific model of $g_K(b_T; b_{max})$ while "truncated PT" refers to a truncated perturbative expansion. Eqs. (2.3,2.4) satisfy this requirement through order $\alpha_s(\mu_{b_*})$.

6. At large $b_{\rm T}$, $b_{\rm max}$ -independence of the exact $\tilde{K}(b_{\rm T},\mu)$ implies that, to a useful approximation,

$$\frac{\mathrm{d}}{\mathrm{d}\ln b_{\max}}g_{K}(b_{\mathrm{T}}=\infty;b_{\max}) = \left[\frac{\mathrm{d}\tilde{K}(b_{\max};C_{1}/b_{\max})}{\mathrm{d}\ln b_{\max}} - \gamma_{K}(\alpha_{s}(C_{1}/b_{\max}))\right]_{\mathrm{truncated PT}},\quad(3.3)$$

as obtained from Eq. (1.7) and the definition of g_K . Equation (2.2) ensures that Eq. (2.1) satisfies Eq. (1.8) so long as everything is calculated only to order $\alpha_s(\mu_{b_*})$. Enforcing both Eq. (3.2) and Eq. (3.3) simultaneously means $g_K(b_T; b_{max})$ will produce a b_{max} independent contribution to $\tilde{K}(b_T; Q)$ for all b_T except perhaps for an intermediate region at the border between perturbative and non-perturbative b_T -dependence. The residual b_{max} dependence there can be reduced by calculating higher orders and refining knowledge of non-perturbative behavior.

For a much more detailed discussion of these considerations, see Sect. VII of Ref. [1]. Equation (2.1) is one of the simplest models that satisfies all 6 of these properties simultaneously.

4. Conclusion

In Sect. 3 we enumerated properties that a model of $g_K(b_T; b_{max})$ needs tp ensure basic consistency in a calculation $\tilde{K}(b_T; Q)$. A simple parametrization was proposed in Sect. 2.

Note that a quadratic $(b_T/b_{max})^2$ dependence at small b_T emerges naturally from (2.1), but with a perturbatively calculable coefficient. Furthermore, the dependence is not exactly quadratic because the coefficients contain logarithmic b_T dependence through $\alpha_s(\mu_{b_*})$.

In a process dominated by very large $b_{\rm T}$, Sect. 3 and Eq. (2.1) predict an especially simple evolution for the low-Q cross section. Namely, the cross section scales as $(Q/Q_0)^a$ where a is combination of $g_K(\infty, b_{\rm max})$ and perturbatively calculable quantities. (See Eq. (85,86) of Ref. [1].)

Future phenomenological work should include efforts to constrain g_0 . Because of its strongly universal nature, this offers a relatively simple way to test TMD factorization.

Acknowledgments

This work was supported by DOE contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab., and by DOE grant No. DE-SC0013699.

References

- J. Collins and T. Rogers, "Understanding the large-distance behavior of transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel," Phys. Rev. D 91, no. 7, 074020 (2015) doi:10.1103/PhysRevD.91.074020 [arXiv:1412.3820 [hep-ph]].
- [2] J. Collins, "Foundations of perturbative QCD," (Cambridge monographs on particle physics, nuclear physics and cosmology. 32)
- [3] T. C. Rogers, "An Overview of Transverse Momentum Dependent Factorization and Evolution," arXiv:1509.04766 [hep-ph].
- [4] A. V. Konychev and P. M. Nadolsky, "Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production," Phys. Lett. B 633, 710 (2006) doi:10.1016/j.physletb.2005.12.063 [hep-ph/0506225].
- [5] P. Sun and F. Yuan, "Transverse momentum dependent evolution: Matching semi-inclusive deep inelastic scattering processes to Drell-Yan and W/Z boson production," Phys. Rev. D 88, no. 11, 114012 (2013) doi:10.1103/PhysRevD.88.114012 [arXiv:1308.5003 [hep-ph]].
- [6] C. A. Aidala, B. Field, L. P. Gamberg and T. C. Rogers, "Limits on transverse momentum dependent evolution from semi-inclusive deep inelastic scattering at moderate Q," Phys. Rev. D 89, no. 9, 094002 (2014) doi:10.1103/PhysRevD.89.094002 [arXiv:1401.2654 [hep-ph]].
- [7] P. Schweitzer, M. Strikman and C. Weiss, "Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking," JHEP 1301, 163 (2013) doi:10.1007/JHEP01(2013)163 [arXiv:1210.1267 [hep-ph]].