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1. Introduction

One of the main goals of hadron physics is to provide a partonic description of the three-
dimensional (3D) momentum structure of protons and neutrons. The nucleon structure is being
studied with many dedicated experiments, recent (HERMES at DESY, Halls A,B and C experi-
ments at Jefferson Lab), running (COMPASS at CERN, STAR and PHENIX at RHIC), approved
(JLab 12 GeV upgrade [1], COMPASS-II [2]) or planned (Electron Ion Collider [3, 4, 5]).

The 3D momentum picture of the nucleon is described by the Transverse Momentum De-
pendent parton distribution functions and fragmentation functions. These Transverse Momentum
Dependent distribution and fragmentation functions (collectively here called “TMDs”) can be ac-
cessed in several types of processes, one of the most important is single particle hadron production
in Semi-Inclusive Deep Inelastic Scattering (SIDIS) of leptons on nucleons. A significant amount
of data on spin-azimuthal distributions of hadrons in SIDIS, providing access to TMDs has been
accumulated in recent years by several collaborations, including HERMES, COMPASS and Halls
A,B and C at Jefferson Lab [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. At least an order of magnitude more
data is expected in coming years of running of JLab 12 [1].

QCD factorization theorems generically allow one to separate the short and long distance
physics, and thus encode information about internal nucleon structure in individual TMDs [16,
17, 18, 19] . In the kinematical domain where transverse momentum of the produced hadron is
much smaller than the hard scale Q, and on the order of ΛQCD, i.e. Λ2

QCD . P2
h⊥� Q2, the SIDIS

cross section can be expressed in terms of structure functions which are given by convolutions of
TMDs where transverse momentum (k⊥) dependence of TMDs is integrated over and related to the
measured value of Ph⊥. A reliable method to directly access the k⊥ dependence of TMDs is very
desirable.

In a paper by Boer, Gamberg, Musch, and Prokudin [20], a new technique has been proposed
called Bessel weighting, which relies on a model-independent deconvolution of structure functions
in terms of Fourier transforms of TMDs from observed azimuthal moments in SIDIS with polarized
and unpolarized targets. A first application of the Bessel weighting Ref. [20] was carried out by
Aghasyan, Avakian, De Sanctis, Gamberg, Mirazita, Musch, Prokudin, Rossi in Ref. [21].

In these proceedings we will recapitulate findings of Refs. [20, 21].

2. Bessel Weighting

The SIDIS cross section can be expressed in a model independent way with leptonic Lµν and
hadronic tensors W µν [22, 23, 24, 25, 26, 27],

dσ

dxdydψ dzdφh d|PPPh⊥|2
=

α2

xyQ2
y2

(1− ε)

(
1+

γ2

2x

)
LµνW µν (2.1)
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or in terms of a set of 18 structure functions

dσ

dxdydψ dzdφh d|PPPh⊥|2
=

α2

xyQ2
y2

2(1− ε)

(
1+

γ2

2x

){
FUU,T + ε FUU,L

+
√

2ε(1+ ε) cosφh Fcosφh
UU + ε cos(2φh)Fcos2φh

UU

+λe
√

2ε(1− ε) sinφh Fsinφh
LU

+S‖

[√
2ε(1+ ε) sinφh Fsinφh

UL + ε sin(2φh)Fsin2φh
UL

]

+S‖λe

[√
1− ε2 FLL +

√
2ε(1− ε) cosφh Fcosφh

LL

]

+ |SSS⊥|

[
sin(φh−φS)

(
Fsin(φh−φS)

UT,T + ε Fsin(φh−φS)
UT,L

)
+ ε sin(φh +φS)Fsin(φh+φS)

UT + ε sin(3φh−φS)Fsin(3φh−φS)
UT

+
√

2ε(1+ ε) sinφS FsinφS
UT +

√
2ε(1+ ε) sin(2φh−φS)Fsin(2φh−φS)

UT

]

+ |SSS⊥|λe

[√
1− ε2 cos(φh−φS)Fcos(φh−φS)

LT +
√

2ε(1− ε) cosφS FcosφS
LT

+
√

2ε(1− ε) cos(2φh−φS)Fcos(2φh−φS)
LT

]}
, (2.2)

where the first two subscripts of the structure functions FXY indicate the polarization of the beam
and target, and in certain cases, a third sub-script in FXY,Z indicates the polarization of the virtual
photon. The structure functions depend on the the scaling variables x, z, the four momentum
Q2 =−q2, where q = l− l′ is the momentum of the virtual photon, and l and l′ are the 4-momenta
of the incoming and outgoing leptons, respectively. Ph⊥ is the transverse momentum component of
the produced hadron with respect to the virtual photon direction.

The scaling variables have the standard definitions, x = Q2/2(P ·q), y = (P ·q)/(P · l), and
z= (P ·Ph)/(P ·q). Further, in Eq. (2.2) α is the fine structure constant; the angle ψ is the azimuthal
angle of l′ around the lepton beam axis with respect to an arbitrary fixed direction [26], and φh is
the azimuthal angle between the scattering plane formed by the initial and final momenta of the
electron and the production plane formed by the transverse momentum of the observed hadron
and the virtual photon, whereas φS is the azimuthal angle of the transverse spin in the scattering
plane [28]. Finally, ε is the ratio of longitudinal and transverse photon fluxes [27].

At tree-level (parton-model) of the hard photon-quark scattering process, and to leading order
in the 1/Q expansion, the hadronic tensor can be written in factorized form as [24, 29, 27]

2MW µν = ∑
a

e2
a

∫
d2 ppp⊥ d2KKKT δ

(2)(zppp⊥+KKKT −PPPh⊥)Tr
{

Φ(x, ppp⊥)γ
µ

∆(z,KKKT )γ
ν

}
. (2.3)
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The quark-quark correlator [30, 17] in the above equation is defined as

Φi j(p,P,S) ≡
∫ d4b

(2π)4 eip·b 〈P,S|ψ̄ j(0)U [Cb]ψi(b)|P,S〉 . (2.4)

First we use the representation of the δ -function

δ
(2)(zppp⊥+KKKT −PPPh⊥) =

∫ d2bbbT

(2π)2 eibbbT (zppp⊥+KKKT−PPPh⊥) , (2.5)

along with the following definitions,

W µν(PPPh⊥)≡
∫ d2bbbT

(2π)2 e−ibbbT ·PPPh⊥ W̃ µν(bbbT ) , (2.6)

Φ̃i j(x,zbbbT )≡
∫

d2 ppp⊥ eizbbbT ·ppp⊥ Φi j(x, ppp⊥) =
∫ db−

(2π)
eixP+b− 〈P,S|ψ̄ j(0)U [Cb]ψi(b)|P,S〉

∣∣∣∣
b+=0

,

(2.7)

∆̃i j(z,bbbT )≡
∫

d2KKKT eibbbT ·KKKT ∆i j(z,KKKT ) , (2.8)

to re-write the leading term in the hadronic tensor in Fourier space,

2MW̃ µν = ∑
a

e2
a Tr
(
Φ̃(x,zbbbT )γ

µ
∆̃(z,bbbT )γ

ν
)
. (2.9)

The advantage of the bbbT space representation is clear: the hadronic tensor is no longer a convolution
of ppp⊥ and KKKT dependent functions but a simple product of bbbT -dependent functions. This motivates
us to re-write the entire cross section in terms of the Fourier transform

dσ

dxdydψ dzh dφh |PPPh⊥|d|PPPh⊥|
=
∫ d2bbbT

(2π)2 e−ibbbT ·PPPh⊥

{
α2

xyQ2
y2

(1− ε)

(
1+

γ2

2x

)
LµνW̃ µν

}
. (2.10)

The advantage of this procedure is a possibility to access bbbT -dependent TMDs directly ex-
perimentally by projecting with appropriate weights. Indeed, we find that generically the SIDIS
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cross-section takes the following form:

dσ

dxdydφS dzh dφh |PPPh⊥|d|PPPh⊥|
=

α2

xyQ2
y2

(1− ε)

(
1+

γ2

2x

) ∫ d|bbbT |
(2π)

|bbbT |

{
+ J0(|bbbT ||PPPh⊥|)FUU,T + ε J0(|bbbT ||PPPh⊥|)FUU,L +

√
2ε(1+ ε) cosφh J1(|bbbT ||PPPh⊥|)F cosφh

UU

+ ε cos(2φh)J2(|bbbT ||PPPh⊥|)F
cos(2φh)
UU +λe

√
2ε(1− ε) sinφh J1(|bbbT ||PPPh⊥|)F sinφh

LU

+ S‖

[√
2ε(1+ ε) sinφh J1(|bbbT ||PPPh⊥|)F sinφh

UL + ε sin(2φh)J2(|bbbT ||PPPh⊥|)F sin2φh
UL

]

+ S‖λe

[√
1− ε2 J0(|bbbT ||PPPh⊥|)FLL +

√
2ε(1− ε) cosφh J1(|bbbT ||PPPh⊥|)F cosφh

LL

]

+ |SSS⊥|

[
sin(φh−φS)J1(|bbbT ||PPPh⊥|)

(
F

sin(φh−φS)
UT,T + ε F

sin(φh−φS)
UT,L

)
+ ε sin(φh +φS)J1(|bbbT ||PPPh⊥|)F

sin(φh+φS)
UT + ε sin(3φh−φS)J3(|bbbT ||PPPh⊥|)F

sin(3φh−φS)
UT

+
√

2ε(1+ ε) sinφS J1(|bbbT ||PPPh⊥|)F sinφS
UT

+
√

2ε(1+ ε) sin(2φh−φS)J2(|bbbT ||PPPh⊥|)F
sin(2φh−φS)
UT

]

+ |SSS⊥|λe

[√
1− ε2 cos(φh−φS)J1(|bbbT ||PPPh⊥|)F

cos(φh−φS)
LT

+
√

2ε(1− ε) cosφS J0(|bbbT ||PPPh⊥|)F cosφS
LT

+
√

2ε(1− ε) cos(2φh−φS)J2(|bbbT ||PPPh⊥|)F
cos(2φh−φS)
LT

]}
. (2.11)

The structure of the cross section is what one gets from a multipole expansion in bbbT -space followed
by a Fourier transform. Each of the structure functions F ···

XY,Z in bbbT -space corresponds to the
Hankel (or Fourier-Bessel) transform of the corresponding structure function F ···XY,Z in the usual
momentum space representation of the cross section. The combinations sin(nφh+ . . .)Jn(|bbbT ||PPPh⊥|)
and cos(nφh + . . .)Jn(|bbbT ||PPPh⊥|) act as basis functions of the combined transform to (|PPPh⊥|,φh)-
space. Due to the fact that the multipole expansion of the physical cross section terminates, only
a finite number of terms appear in the cross section, with J3 being the Bessel function of highest
order. The structures F ···

XY,Z are functions of |bbbT |, x and z, but no longer depend on the angular
variables. Introducing a short-hand notation for products

P[ f̃ (n)D̃(m)]≡ xB ∑
a

e2
a (zM|bbbT |)n (zMh|bbbT |)m f̃ a(n)(x,z2bbbT

2) D̃a(m)(z,bbbT
2) , (2.12)

the leading twist tree level analysis reveals that the Fourier transformed structures in the cross

5
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section are simple products of TMD PDFs and TMD FFs

FUU,T = P[ f̃ (0)1 D̃(0)
1 ] , (2.13)

F
sin(φh−φS)
UT,T = −P[ f̃⊥(1)1T D̃(0)

1 ] , (2.14)

FLL = P[g̃(0)1L D̃(0)
1 ] , (2.15)

F
cos(φh−φs)
LT = P[g̃(1)1T D̃(0)

1 ] , (2.16)

F
sin(φh+φS)
UT = P[h̃(0)1 H̃⊥(1)1 ] , (2.17)

F
cos(2φh)
UU = P[h̃⊥(1)1 H̃⊥(1)1 ] , (2.18)

F
sin(2φh)
UL = P[h̃⊥(1)1L H̃⊥(1)1 ] , (2.19)

F
sin(3φh−φS)
UT =

1
4
P[h̃⊥(2)1T H̃⊥(1)1 ]. (2.20)

Transverse momentum weighted SSA [24, 31, 25] provide a means to disentangle in a model
independent way the cross sections and asymmetries in terms of the transverse (momentum) mo-
ments of TMD PDFs. Generally they are given by

AW
XY = 2

∫
d|PPPh⊥| |PPPh⊥|dφh dφS W (|PPPh⊥|,φh,φS)

(
dσ↑(φh,φS)−dσ↓(φh,φS)

)∫
d|PPPh⊥| |PPPh⊥|dφh dφS (dσ↑(φh,φS)+dσ↓(φh,φS))

, (2.21)

where the labels X ,Y represent the polarization, “un” (U), longitudinally (L) and transversely (T )
of the beam and target, respectively. The angles φS and φh specify the directions of the hadron spin
polarization and the transverse hadron momentum respectively, relative to the lepton scattering
plane. The cross sections dσ↑ and dσ↓ correspond to the cases with opposite transverse spin
polarization of the target hadron. We have introduced the short-hand notation W which is a function
containing various powers and PPPh⊥ as well as angular dependences of the form sin(mφh±nφS) or
cos(mφh± nφS). For the conventional weighted Sivers asymmetry, W ≡ w1 sin(φh− φS), where
w1 = |PPPh⊥|/zM.

Based on the expansion of the SIDIS cross section in terms of Bessel functions Jn of transverse
momentum and impact parameter in Eq. (2.11), we exploit the orthogonality to generalize the
weighting procedure. Now the weighting is of the form

AW
XY (BT ) = 2

∫
d|PPPh⊥| |PPPh⊥|dφh dφS W (|PPPh⊥|,φh,φS,BT )

(
dσ↑−dσ↓

)∫
d|PPPh⊥| |PPPh⊥|dφh dφSJ0(|PPPh⊥|BT )(dσ↑+dσ↓)

, (2.22)

where the weight function W corresponds to that of conventional weighted asymmetries, except
that we replace

|PPPh⊥|n→ Jn(|PPPh⊥|BT )n!
(

2
BT

)n

. (2.23)

Taking the asymptotic form of the Bessel function the conventional weights [31, 25] which are
∝ |PPPh⊥|n appear as the leading term of the Taylor expansion of the right hand side of Eq. (2.23).
Furthermore we note that the parameter BT > 0 regularizes UV divergences in moments of TMD
PDFs and FFs. More importantly, we will show that the parameter BT > 0 allows us to scan
TMD PDFs and TMD FFs in Fourier space. In fact, the form of Eq. (2.22) already indicates that

6
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the weighting implements a Fourier-decomposition of the cross section in transverse momentum
space.

We will illustrate this method for the Sivers Bessel weighted asymmetry. One can see from
Eq. (2.11) that the appropriate weight for the Sivers asymmetry is

W =
2J1(|PPPh⊥|BT )

zMBT
sin(φh−φS), i.e., w1 =

2J1(|PPPh⊥|BT )

zMBT
, (2.24)

corresponding to |PPPh⊥|/zM in the limit |PPPh⊥| � 1/BT . Then the Bessel-weighted Sivers asymme-
try is

A
2J1(|PPPh⊥|BT )

zMBT
sin(φh−φS)

UT (BT ) = 2

∫
d|PPPh⊥| |PPPh⊥|dφh dφS

2J1(|PPPh⊥|BT )
zMBT

sin(φh−φS)
(
dσ↑−dσ↓

)∫
d|PPPh⊥| |PPPh⊥|dφh dφS J0(|PPPh⊥|BT ) (dσ↑+dσ↓)

,

(2.25)
where the axially symmetric denominator is given by∫

d|PPPh⊥| |PPPh⊥|dφh dφS J0(|PPPh⊥|BT )
∫ d|bbbT |

(2π)
|bbbT |J0(|bbbT ||PPPh⊥|)FUU,T , (2.26)

and from Eq. (2.11) the numerator is∫
d|PPPh⊥| |PPPh⊥|dφh dφS

2J1(|PPPh⊥|BT )

zMBT
sin2(φh−φs)

∫ d|bbbT |
(2π)

|bbbT |J1(|bbbT ||PPPh⊥|)F
sin(φh−φs)
UT .

(2.27)
Finally, making use of the closure relation of the Bessel function we obtain f the Bessel weighted
Sivers asymmetry,

A
2J1(|PPPh⊥|BT )

zMBT
sin(φh−φs)

UT,T (BT ) =−2
∑a e2

a Hsin(φh−φS)
UT,T (Q2,µ2) f̃⊥(1)a1T (x,z2B2

T ; µ2,ζ ) D̃(0)a
1 (z,B2

T ; µ2, ζ̂ )

∑a e2
a HUU,T (Q2,µ2) f̃ (0)a1 (x,z2B2

T ; µ2,ζ ) D̃(0)a
1 (z,B2

T ; µ2, ζ̂ )
.

(2.28)

One can see from Eq. 2.28 that the weighed asymmetry is related to a product of Fourier
transformed Sivers function and unpolarised TMD fragmentation function.

Details of the method can be found in Ref [20].

3. Feasibility studies

We studied experimental feasibility of the method in Ref. [21]. Consider the unpolarized and
double longitudinal structure functions,

FUU,T = x ∑
a

e2
a f̃ a

1 (x,z
2bbbT

2)D̃a
1(z,bbbT

2) , FLL = x ∑
a

e2
ag̃a

1L(x,z
2bbbT

2)D̃a
1(z,bbbT

2) , (3.1)

where the Fourier transform of the TMDs are defined as

f̃ (x,bbbT
2) =

∫
d2kkk⊥ eibbbT ·kkk⊥ f (x,kkk2

⊥)

= 2π

∫
dkkk⊥kkk⊥J0(|bbbT ||kkk⊥|) f (x,kkk2

⊥) , (3.2)

7
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D̃(z,bbbT
2) =

∫
d2 ppp⊥ eibbbT ·ppp⊥ D(z, ppp2

⊥)

= 2π

∫
d ppp⊥ppp⊥J0(|bbbT ||ppp⊥|) D(x, ppp2

⊥) . (3.3)

Now we form the double longitudinal spin asymmetry

AJ0(bT Ph⊥)
LL (bT ) =

σ̃+(bT )− σ̃−(bT )

σ̃+(bT )+ σ̃−(bT )
≡ σ̃LL(bT )

σ̃UU(bT )
=
√

1− ε2 ∑a e2
ag̃a

1L(x,z
2b2

T )D̃
a
1(z,b

2
T )

∑a e2
a f̃ a

1 (x,z2b2
T )D̃

a
1(z,b

2
T )

,

(3.4)

Note that in our definition bT is Fourier conjugate variable to Ph⊥ [20].
A Monte Carlo generator is a crucial component in testing experimental procedures such as

those described in Eq. (3.4). In order to check the Bessel weighting technique we need a Monte
Carlo that generates events in phase space with different TMD model input, which includes explicit
dependence on intrinsic parton transverse momentum k⊥ and p⊥.

In the Monte Carlo generator software, we used the general-purpose, self-adapting event gen-
erator, Foam [32], for drawing random points according to an arbitrary, user-defined distribution in
n-dimensional space.

Implementing the Monte Carlo we generate kinematical distributions in x, z, k⊥, and p⊥ of
SIDIS events for several model inputs of TMDs. These distributions are then used to check the
consistency of dependence of extracted quantities under different model assumptions, including,
for example Gaussian and non-Gaussian distributions in transverse momentum.

In case the dependence is assumed to be a Gaussian, x and z dependent widths are assumed,
so that TMDs take the following form,

f1(x,kkk2
⊥) = f1(x)

1
〈k2
⊥(x)〉 f1

exp

(
− kkk2

⊥
〈k2
⊥(x)〉 f1

)
, (3.5)

g1L(x,kkk2
⊥) = g1L(x)

1
〈k2
⊥(x)〉g1

exp

(
− kkk2

⊥
〈k2
⊥(x)〉g1

)
, (3.6)

D1(z, ppp2
⊥) = D1(z)

1
〈p2
⊥(z)〉

exp
(
−

ppp2
⊥

〈p2
⊥(z)〉

)
, (3.7)

where f (x) and D(z) are corresponding collinear parton distribution and fragmentation functions
and the widths are x and z dependent functions. In our studies we adopt the modified Gaussian dis-
tribution functions and fragmentation functions from Eq. (3.5)-(3.7), in which x and k⊥ dependen-
cies are inspired by AdS/QCD results [33, 34], with 〈k2

⊥(x)〉=Cx(1−x) and 〈p2
⊥(z)〉= Dz(1− z),

where the constants C and D may be different for different flavors and polarization states (see for
example [35]). Similarly such non-factorized x,k⊥ distribution functions are also suggested by the
diquark spectator model [36] and the NJL-jet model [37].

For the x and z dependence in Eqs. (3.5) and (3.7) we use the parametrizations, f1(x) = (1−
x)3 x−1.313, g1L(x) = f1(x)x0.7, and D1(z) = 0.8(1− z)2, using input values C = 0.54 GeV2 and
D = 0.5 GeV2. We also assume that 〈k2

⊥〉g1L = 0.8〈k2
⊥〉 f1 ; this assumption is consistent with lattice

studies [38] and experimental measurements [14].
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As an example of a non-Gaussian k⊥ distribution we implement the following one inspired by
the shape of the resulting distribution in the light-cone quark model [39, 40]

f1(x,kkk2
⊥) = f1(x)/

(
1+20.82 k2

⊥+126.7 k4
⊥+1285 k6

⊥
)
. (3.8)

where the coefficients for g1L(x,kkk2
⊥) are chosen in such a way that effectively 〈k2

⊥〉g1L/〈k2
⊥〉 f1 = 0.8.

We then generate events using the cross section for both Gaussian and non-Gaussian initial
distributions respectively. Note that the generator we construct is implemented with on mass-shell
partons and with four momentum conservation imposed. While this choice is not compulsory we
adopt it as it allows us to fully reconstruct kinematics for a given event. At the same time limitations
due to available phase space integration will modify the reconstructed distributions with respect to
the input distributions. We analyze the effect of the available phase space in the Monte Carlo on
the average 〈k2

⊥〉 for finite beam energies as a function of x by calculating the effective 〈k2
⊥〉 from

the following formula,

〈k2
⊥(x)〉=

∫
d2kkk⊥k2

⊥dσMC∫
d2kkk⊥dσMC

=
∑

N
j=1 k2

⊥ j

N
, (3.9)

where the index j runs over the N Monte Carlo generated events. Note, dσMC is the cross section
of the Monte Carlo simulation modified by imposing the four momenta conservation and on-shell
condition for initial quark.

The Monte Carlo generated events are used like experimental events to extract both the Bessel
weighted asymmetry, AJ0(bT Ph⊥)

LL , and the ratio of the Fourier transform of g1L and f1 using the
Bessel weighting method described in [20]. The results are then compared to the Monte Carlo
input. The Bessel moments are extracted from the Monte Carlo with 6 GeV beam energy using
both the modified Gaussian type of functions (see Eqs. (3.5)-(3.7)) and power law-tail like function
(see Eq. (3.8)).

The numerical results of our studies are summarized and displayed in Figs. 1 and 2 for the
modified Gaussian distribution function and for the power law-tail like distribution function inputs
respectively. In the left panel of Fig. 1 we show the Bessel-weighted asymmetry versus bT . The
blue curve labeled “BW Input”, is the asymmetry calculated analytically using the right hand side
of Eq. (3.4) and the Fourier transformed input distribution functions.

We now compare various distributions generated from the Monte Carlo. We plot the gener-
ated distribution (full red points) labeled “BW(Ph⊥) Generated”, and the black triangles labeled
“BW(Ph⊥) Sm + Acc”, which represents the same extraction after experimental smearing and ac-
ceptance (using the CLAS detector [41], which is a quasi-4π detector with less than 1% momentum
resolution in the presented bin 〈x〉= 0.22, and 〈z〉= 0.51).

Analyzing our MC results with four momenta conservation and target mass correction, we are
able to distinguish two effects in the left panels of Figs. 1 and 2:

1. Solid (blue) curve versus triangular (green) data points: The distributions realized in
the MC simulation differ from the input distributions. In the MC, the four-momentum
conservation does not allow the variables kkk⊥ and ppp⊥ to be sampled independently over the
whole integration range, as it would have to be done to reproduce the unmodified generalized
parton model. The actual kkk⊥ and ppp⊥ distributions realized by the MC differ from the analytic

9
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input distributions Eqns. (3.5)-(3.8) noticeably, especially in their widths. The solid (blue)
curve in the left panel of Figs. 1 and 2 is calculated from the input distributions according
to the generalized parton model; the FFs on the right hand side of Eq. (3.4) cancel exactly
in the single flavor scenario. Thus the solid curve can be compared to the triangle shaped
(green) data points, which have also been calculated from a ratio of TMD PDFs, Eq. (??),
albeit with the actual distributions realized in the MC.

2. Triangular (green) data points vs. circular (red) data points: inadequacy of the gener-
alized parton model to describe the data. In a single flavor scenario, the distribution func-
tions D̃a

1 cancel exactly on the right hand side of Eq. (3.4). Therefore, there should not be
any difference between the full asymmetry AJ0(bT Ph⊥)

LL (bT ) of Eq. (3.4) and the ratio of TMD
PDFs. However, we do observe a difference between the circular (red) data points and the
triangular (green) data points in the left panels of Figs. 1 and 2. Again, the four-momentum
conservation we have implemented is the reason for the observed difference. Since kkk⊥ and
ppp⊥ are no longer sampled and the right hand side of Eq. (3.4) looses the prerequisites for its
derivation and is violated to some degree. Therefore, we see only an incomplete cancellation
of FFs for the Monte Carlo events.

To an experimentalist who is concerned about systematic errors attributed to the observables
he or she extracts, the first of the two effects above is not an issue. The purpose of the generalized
parton model is to provide a parametrization of the data one observes. Any effect of the underlying
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Figure 1: Left panel:The ratio of Fourier transforms g̃1L/ f̃1 and the Bessel weighted asymmetry AJ0(bT Ph⊥)
LL plotted versus bT . The

solid curve (blue) is the Fourier transform of the input to the Monte Carlo given by Eq. (3.4), red points are generated Monte Carlo
events, and triangles down (black) represent results of Monte Carlo events after experimental smearing and acceptance at 〈x〉 = 0.22,
and 〈z〉= 0.51. The triangles up with dashed curve (green) are results of the Monte Carlo without inclusion of fragmentation functions.
Right panel: Ratios that represent accuracies of our results.
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Figure 2: The same as in Fig. (1) but here from the power-law tail distribution function based on the Monte Carlo.

scattering mechanism that can be absorbed into the distributions does not contradict the validity
of the model. The only concern one might have is that the distributions become beam energy/Q2

dependent, an issue that should be addressed using TMD evolution equations.
On the other hand, the second effect presented above can be taken as an indication for sys-

tematic uncertainties. If, indeed, the physical reality does not generate events in accordance with
the functional shape of the generalized parton model, then using the model for the extraction of
distributions necessarily involves systematic errors. Again, we point out that it is unclear whether
the modifications we have implemented in our MC bring us closer to the physical reality. Nonethe-
less, the modifications are reasonable and so we believe they can give us a hint about the order of
magnitude of systematic errors from the corresponding approximations in the model. One can then
estimate that for calculations such as those performed in Ref. [42], systematic errors in the com-
parison with experimental data for bT < 6GeV−1 are of the order of a few percent. For the data
with bT > 6GeV−1, the effects of four-momentum conservation (difference between red and green
points) becomes more pronounced, and a fit of data using the generalized parton model without
manifest four-momentum conservation therefore becomes less accurate.

4. Conclusions

We find that the Bessel weighting technique provides a powerful and reliable tool to study
the Fourier transform of TMDs with controlled systematics due to experimental acceptances and
resolutions with different TMD models inputs. We plan to expand our studies with more advanced
parton shower and fragmentation mechanisms, as well as to include nuclear modifications in our
Monte Carlo and extraction procedure.
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