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1. Introduction

Transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmen-
tation functions (FFs) depend on the longitudinal and transverse components of the momentum of
partons with respect to the parent hadron momentum, as well as on their flavor and polarization
state. The TMD PDFs and TMD FFs enlarge the view established with ordinary integrated PDFs
and FFs by exploring the multi-dimensional partonic structure of hadrons in momentum space.
Several data for single- and double-spin asymmetries in semi-inclusive deep-inelastic scattering
(SIDIS) can be interpreted as originating from the effect of specific combinations of (polarized)
TMD PDFs and TMD FFs (see, e.g., Ref. [1]). The SIDIS process is useful because it gives simul-
taneous access to TMD PDFs and TMD FFs. But the factorized cross section always involves a
convolution of initial and fragmenting parton transverse momenta: anticorrelation hinders a sepa-
rate investigation of the two intrinsic distributions.

Therefore, we consider the semi-inclusive production of two back-to-back hadrons in electron-
positron annihilations. In analogy with the SIDIS process, we define the multiplicities as the differ-
ential number of back-to-back pairs of hadrons produced per corresponding single-hadron produc-
tion. Then, we study their transverse momentum distribution at large values of the center-of-mass
(cm) energy, starting from an input expression for TMD FFs taken from the analysis of HERMES

SIDIS multiplicities at low energy performed in Ref. [2]. In this framework, we can extract clean
and uncontaminated details on the transverse-momentum dependence of the unpolarized TMD FF,
which is a fundamental ingredient of any spin asymmetry in SIDIS and, therefore, it affects the
extraction also of polarized TMD distributions.

The hard scales involved in e+e− annihilations are much larger than the average values ex-
plored in SIDIS by HERMES , which is assumed as the starting reference scale. To account for
this scale dependence, the TMD functions must obey evolution equations that generalize the stan-
dard Renormalization Group Evolution (RGE) to a multi-scale regime in hard processes. TMD
evolution equations have been derived for unpolarized TMD PDFs and TMD FFs [3, 4]. But the
phenomenological implementation of these effects is still under active debate [5], and only recently
an attempt of giving a (not complete) description was released [6].

Because of the wide range spanned between the typical SIDIS and e+e− scales, we can make
realistic tests on the sensitivity to various implementations of TMD evolution available in the liter-
ature [7]. Moreover, in the analysis of HERMES SIDIS multiplicities a clear indication was found
that different quark flavors produce different transverse-momentum distributions of final hadrons,
although the flavor-independent fit of the data was not statistically excluded [2]. Here, we investi-
gate also to which extent the annihilation rate is modified according to the flavor configurations of
partonic transverse momenta, by considering different combinations of final pions and kaons [7].

2. Multiplicities for e+e−

We consider the process e+e−→ h1h2X (see Fig. 1), where an electron e− and a positron e+

annihilate producing a virtual photon with time-like momentum transfer q2 ≡ Q2 ≥ 0. The virtual
photon emits a quark and an antiquark, which further fragment in two back-to-back jets. Each jet
contains an unpolarized leading hadron: the hadron h1 with momentum and mass P1,M1, in one
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Figure 1: Kinematics for the e+e− annihilation leading to back-to-back hadrons with momenta P1 and P2.

emisphere, and the hadron h2 with momentum and mass P2,M2 in the opposite emisphere. The
fractional energies carried by the two hadrons are defined through the following invariants:

z1 =
2P1 ·q

Q2 ≈ P1 ·P2

q ·P2
z2 =

2P2 ·q
Q2 ≈ P2 ·P1

q ·P1
, (2.1)

and we define also the invariant y = P2 · `/P2 ·q, where ` is the electron momentum.
In the electron-positron cm frame, we select the frame where (q,P2) have no transverse com-

ponents; we choose ẑzz = −PPP2 and Pµ
1 = (0, |PPP1⊥| cos φ , |PPP1⊥| sin φ , 0) (see Fig. 1). In the plane

perpendicular to (P1,P2), qqqT 6= 0 and it holds qqqT = −PPP1⊥/z1 up to corrections of order 1/Q2 [7].
We define also the angle θ = arccos(`̀̀ · ẑzz/|`̀̀|) which is related to the invariant y≈ (1+ cos θ)/2.

We consider a kinematics where q2
T � Q2 and M2 � Q2. Hence, contributions to the cross

section from perturbative terms at large transverse momenta or from higher twists are neglected.
Moreover, the soft gluon radiation is here resummed at the Next-to-Leading-Log level (NLL), and
the hard annihilation is calculated at leading order (LO) in αS [7]. Then, the cross section for the
e+e− annihilation into back-to-back pairs of unpolarized hadrons simplifies to

dσh1h2

dz1 dz2 dq2
T dy

≈ 6πα2

Q2

(
1
2
− y+ y2

)
∑
q

e2
q

∫
∞

0
dbT bT J0(qT bT )

×[z2
1 Dq→h1

1 (z1,bT ; ζ1, µ)z2
2 Dq̄→h2

1 (z2,bT ; ζ2, µ)+(q↔ q̄)] , (2.2)

where qT ≡ |qqqT | and Dq→h
1 (z,bT ; ζ , µ) is the TMD FF in impact parameter space for an unpolarized

quark with flavor q fragmenting into an unpolarized hadron h and carrying light-cone momentum
fraction z and transverse momentum conjugated to bT [8]. The TMD FF can be factorized at the
renormalization/factorization scale µ and evolves with it through standard RGE. The Dq→h

1 depends
also on the scale ζ (with ζ1ζ2 = Q4) which is connected to a rapidity cutoff necessary to isolate
and define the TMD FF itself [3, 4]; we name ζ the rapidity scale.

In strict analogy with the SIDIS definition [9], we construct the e+e− multiplicities as the
differential number of back-to-back pairs of hadrons produced per corresponding single-hadron
production after the e+e− annihilation. In terms of cross sections, we have

Mh1h2(z1,z2,q2
T ,y) =

dσh1h2

dz1 dz2 dq2
T dy

/
dσh1

dz1 dy
, (2.3)

where dσh1h2 is the differential cross section of Eq. (2.2). The dσh1 describes the production of a
single hadron h1 from the e+e− annihilation [10].
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3. TMD evolution

We now address the evolution of the TMD FF with the factorization scale µ and the rapidity
scale ζ . Different scenarios are possible according to the choice of the starting value for µ .

3.1 The µb prescription

The functional form of TMD FFs at small bT can be calculated in perturbative QCD. Hence,
it is convenient to introduce the new variable b̂T that freezes at bmax when bT becomes large.
Consistently with the approximations leading to the cross section (2.2) and using the technique of
Operator Product Expansion (OPE), the bT –spectrum of TMD FFs can be described as [7]

Da→h(z,bT ;Q) = eSpert(b̂T ;Q,µb̂) e
−gnp(bT ) log Q2

Q2
0 da→h

1 (z; µb̂)
1
z2 e−

〈PPP2
⊥〉

a→h(z)

4z2 b2
T

= R(bT ;Q,µb̂,Q0)Da→h(z,bT ; µb̂) , (3.1)

where the collinear fragmentation function d j→h
1 for flavor j is evaluated at the running scale µb̂ =

2e−γE/b̂T with γE the Euler constant. The Sudakov term Spert describes the evolution with the
factorization scale µ ≡ Q (starting from the scale µb̂ running with bT ) and the perturbative part
at b̂T ≤ bmax of the evolution with ζ (starting again from the running µ2

b̂
). The model-dependent

function gnp describes the nonperturbative part at large bT of the evolution with ζ starting from
the scale Q2

0. At this initial scale, the input transverse-momentum dependence of TMD FFs is
represented in configuration space by the shown Gaussian ansatz, where 〈PPP2

⊥〉a→h(z) is the flavor-
and z-dependent Gaussian width. This form is suggested by the analysis performed in Ref. [2] of
the transverse-momentum dependence of SIDIS multiplicities measured by HERMES [9].

Hence, the net effect of TMD evolution can be represented as the action of an operator R on the
input TMD FF evaluated at the scale µb̂, which is running with bT . This peculiar feature grants that
there is a smooth matching between the perturbative domain at small bT and the nonperturbative
domain at large bT . However, it does not allow to unambiguously recover the initial TMD FF when
switching off evolution effects. In fact, for Q = µb̂ the R operator does not become the identity
because µb̂ 6= Q0. In practice, if Q0 is identified with the average scale of the HERMES data for
SIDIS multiplicities [9], namely Q2

0 = 2.4 GeV2, it is easy to find a value of bmax such that µb̂≈Q0,
because the HERMES kinematics overlaps with the domain of large bT where b̂T ≈ bmax [7].

Following Refs. [11, 12], we choose gnp to be

glin
np(bT ) =

g2

4
b2

T , or glog
np (bT ) = g2 b̄2

T ln
(

1+
b2

T

4b̄2
T

)
, b̄T = 1 GeV−1 , (3.2)

where bmax and g2 are anticorrelated [7]. We choose values inspired to Refs. [11, 12].
We also explored different expressions for b̂T :

b̂T ≡ b∗T =
bT√

1+ b2
T

b2
max

, b̂T ≡ b†
T = bmax

{
1− exp

[
− b4

T

b4
max

]} 1
4

. (3.3)

The first one is the socalled “b-star” prescription [3, 11]; the second one approaches the asymptotic
constant bmax more steeply and quickly.
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In principle, we have four different combinations of prescriptions. However, some of them pro-
duce redundant results and have been neglected. In summary, the transverse-momentum spectrum
of the multiplicities in Eq. (2.3) has been analyzed by varying the anticorrelated pair of parameters
{bmax,g2}, and by considering only the two combinations {b∗T ,glin

np} and {b†
T ,g

log
np }.

3.2 The fixed-scale prescription

We can write the evolution of TMD FFs in an alternative way to Eq. (3.1) by fixing the initial
scale at the value Q2

i ≡ Q2
0 = 2.4 GeV2 for the whole bT distribution. With this choice, it is not

possible to apply OPE for calculating a perturbative tail to which the TMD FF should match at low
bT : we need a model input over the whole bT spectrum. In our case, it is natural to identify the
input TMD FF at the starting scale Qi with the Gaussian parametrization of Eq. (3.1) equipped with
the collinear d1 evaluated at Q0. Then, the expression for the evolved TMD FF becomes [7]

Da→h(z,bT ;Q) = eSpert(bT ;Q,Qi) da→h
1 (z;Qi)

1
z2 e−

〈PPP2
⊥〉

a→h(z)

4z2 b2
T . (3.4)

The nonperturbative Sudakov term involving gnp is included in Spert, which is valid for all the bT

spectrum. It actually accounts for the nonperturbative part of the evolution with ζ from µb̂ to Qi [7].

4. Results for TMD multiplicities

The flavor sum in Eq. (2.2) can be simplified using the symmetry of TMD FFs upon charge-
conjugation transformations, and distinguishing favored from unfavored fragmentation [7]. The
flavor- and z-dependence of the Gaussian ansatz in Eq. (3.1) is described in total by seven fit-
ting parameters [2]. For the collinear functions dq→h

1 (z; Q2
0), we adopt the parametrization of

Ref. [13]. Results are presented as normalized multiplicities Mh1h2(z1,z2,q2
T ,y)/Mh1h2(z1,z2,0,y)

for the hadron pair (h1,h2), where M is defined in Eq. (2.3). In such way, we are able to directly
compare the genuine trend in q2

T for each different case. If not explicitly specified, we choose
y = 0.2. For each specific case, the results are displayed as uncertainty bands: they represent the
68% of the envelope of 200 different curves produced from 200 different values for the vector of
seven intrinsic parameters describing the Gaussian ansatz in Eq. (3.1). They are obtained by fitting
the SIDIS multiplicities measured by the HERMES collaboration [9] (see Ref. [2]).

We first explore the sensitivity of our predictions to different values of the pair bmax [GeV−1]

and g2 [GeV2] (hereafter, we omit their units for simplicity). In Fig. 2, the normalized multiplicity
for a (π+π−) pair with z1 = z2 = 0.5 is shown as a function of PPP2

hT ≡PPP2
1⊥= z2

1qqq2
T at the BELLE scale

Q2 = 100 GeV2 for the µb evolution scheme and with the {b∗T , glin
np} prescription for the transition

to the nonperturbative regime. The uncertainty bands correspond to {bmax = 1.5, g2 = 0.18} (dot-
dashed borders), {bmax = 1, g2 = 0.43} (dashed borders), {bmax = 0.5, g2 = 0.68} (solid borders).
The squared box with error bar indicates a hypothetical experimental error of 7%. It seems small
enough to discriminate among the different predictions. Two additional light-gray bands are shown,
which are partially overlapped (dot-dashed borders) or completely overlapped (dashed borders) to
the band with solid borders. These bands reproduce the outcome of calculations performed in the
same conditions but for µb/2 (dot-dashed borders) and 2µb (dashed borders). The almost complete
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Figure 2: The normalized multiplicity for a (π+π−) pair with z1 = z2 = 0.5 as a function of PPP2
hT ≡ PPP2

1⊥ =

z2
1qqq2

T at the BELLE scale Q2 = 100 GeV2 for the µb evolution scheme and with the {b∗T , glin
np} prescription

for the transition to the nonperturbative regime (see text). The uncertainty bands correspond to {bmax =

1.5, g2 = 0.18} (dot-dashed borders), {bmax = 1, g2 = 0.43} (dashed borders), {bmax = 0.5, g2 = 0.68}
(solid borders). The latter is accompanied by light-gray bands for results with the same parameters but with
the choice µb/2 (dot-dashed borders) or 2µb (dashed borders). An experimental error of 7% is also indicated.

Figure 3: The normalized multiplicity for a (π+π−) pair as a function of PPP2
hT ≡ PPP2

1⊥ = z2
1qqq2

T in the same
conditions and with the same notation as in Fig. 2 but for the "fixed-scale" evolution scheme. Left panel
for z1 = z2 = 0.5, right panel for z1 = 0.3,z2 = 0.5. The additional light-gray bands with dot-dashed and
solid borders are the result related to the "µb" evolution scheme for {bmax = 1.5, g2 = 0.18} and {bmax =

0.5, g2 = 0.68}, respectively.

overlap of these results shows that for the selected observable the sensitivity to the arbitrary choice
of the matching scale µb is negligible.

Next, we explore the sensitivity of the normalized multiplicity to the choice of the evolution
scheme. In Fig. 3, the normalized multiplicity for a (π+π−) pair is shown as a function of PPP2

hT ≡
PPP2

1⊥ = z2
1qqq2

T in the same conditions and with the same notation as in Fig. 2 but for the "fixed-
scale" evolution scheme. The left panel displays pion pairs with z1 = z2 = 0.5, the right panel
with z1 = 0.3,z2 = 0.5. The two additional light-gray bands correspond to the results with the "µb"
evolution scheme for {bmax = 1.5, g2 = 0.18} (dot-dashed borders) and {bmax = 0.5, g2 = 0.68}
(solid borders). In the left panel, it is important to notice that there is a significant overlap between
the "fixed-scale" band with maximum bmax (dot-dashed borders) and the "µb" light-gray band with
minimum bmax (solid borders). Apparently, the normalized multiplicity seems not enough sensitive
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to discriminate among different evolution schemes. However, this result is observed at z1 = z2 =

0.5. In the right panel, the same situation is reproduced with z1 = 0.3 and z2 = 0.5. Now, the two
bands are well separated and can be distinguished by the indicated hypothetical experimental error
around 7%. Therefore, only when combining the study of both the z and PPP2

1⊥ dependencies in the
normalized multiplicity we may be able to discriminate among different TMD evolution schemes.

Figure 4: The normalized multiplicity for a (π+π−) pair at z2 = 0.5 as a function of PPP2
hT ≡ PPP2

1⊥ = z2
1qqq2

T at
the BELLE scale Q2 = 100 GeV2 for the "µb" evolution scheme and with the {b†

T , glog
np } prescription for the

transition to the nonperturbative regime (see text). Notation for the uncertainty bands as in previous figure.
The additional light-gray bands with dot-dashed and solid borders are the result with the {b∗T , glin

np}matching
prescription for {bmax = 1.5, g2 = 0.18} and {bmax = 0.5, g2 = 0.68}, respectively. Left panel for z1 = 0.5,
right panel for z1 = 0.3.

We now consider the possibility of discriminating among the two different functional depen-
dences for gnp(bT ) in Eq. (3.2), or among the two prescriptions for b̂T (bT ) in Eq. (3.3). In Fig. 4,
the normalized multiplicity for a (π+π−) pair is shown as a function of PPP2

hT ≡ PPP2
1⊥ = z2

1qqq2
T at the

BELLE scale Q2 = 100 GeV2 for the "µb" evolution scheme. A group of uncertainty bands displays
the results for the {b†

T , glog
np } prescription in the standard notation, i.e. for {bmax = 1.5, g2 = 0.18}

(dot-dashed borders), {bmax = 1, g2 = 0.43} (dashed borders), and {bmax = 0.5, g2 = 0.68} (solid
borders). The two light-gray bands correspond to the results with the {b∗T , glin

np} prescription for
{bmax = 1.5, g2 = 0.18} (dot-dashed borders) and {bmax = 0.5, g2 = 0.68} (solid borders). In the
left panel where z1 = z2 = 0.5, the two bands with dot-dashed borders are substantially overlapped,
suggesting that it might not be possible to discriminate between the {b∗T , glin

np} and {b†
T , glog

np } pre-
scriptions. In the right panel, the same calculation is performed at z1 = 0.3, z2 = 0.5, and a suf-
ficiently small experimental error could discriminate between the two bands. Unfortunately, the
plot suggests also that this option seems possible only for the {bmax = 1.5, g2 = 0.18} case. And
further explorations show that the same calculation, when performed in the "fixed-scale" evolution
scheme, produces more confused results.

In summary, we find that only the combined study of the z and PPP2
1⊥ dependencies of the nor-

malized multiplicity allows for discerning results obtained from different parametrizations and pre-
scriptions in the description of nonperturbative effects in the TMD evolution. This is not accidental.
The main difference between the two considered evolution schemes lies in fact in the z dependence
of the collinear fragmentation function d1, as it can be deduced by comparing Eqs. (3.1) and (3.4).

Previous results have been obtained at the BELLE scale of Q2 = 100 GeV2. In Fig. 5, the
normalized multiplicity for a (π+π−) pair at z1 = z2 = 0.5 is shown as a function of PPP2

hT ≡ PPP2
1⊥ =

7
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Figure 5: The normalized multiplicity for a (π+π−) pair at z1 = z2 = 0.5 as a function of PPP2
hT ≡ PPP2

1⊥ = z2
1qqq2

T
at the BES-III scale Q2 = 14.6 GeV2 for the "µb" evolution scheme and with the {b∗T , glin

np} prescription (see
text). Notation and conventions for the uncertainty bands as in Fig. 2.

z2
1qqq2

T in the same conditions and notation as in Fig. 2 but at the BES-III scale Q2 = 14.6 GeV2.
With respect to Fig. 2, we deduce that the net effect is a systematic enlargement of the uncertainty
bands. This finding occurs also for other combinations of evolutions schemes and nonperturbative
prescriptions. Hence, we deduce that working at the BES-III scale is not useful if we want to
discriminate among different evolution parameters, prescriptions, or schemes. However, we recall
that each uncertainty band is the envelope of the 68% of 200 different replicas. Then, we might
envisage that a sufficiently small experimental error could discriminate some of them, in order to
narrow the uncertainty on the intrinsic parameters of the Gaussian ansatz.

Figure 6: The ratio of normalized multiplicities between {π+π−} and {K+K−} final pairs at z2 = 0.5 and
y= 0.2 as a function of PPP2

hT ≡PPP2
1⊥= z2

1qqq2
T at the BELLE scale Q2 = 100 GeV2 for the "fixed-scale" evolution

scheme, for the evolution parameters {bmax = 1.5, g2 = 0.18}, and with the {b∗T , glin
np} prescription (see text).

Uncertainty bands with dot-dashed, dashed, and solid borders for z1 = 0.3, 0.5, 0.7, respectively. Left panel
for flavor independent intrinsic parameters of input TMD FF, right panel for flavor dependent ones (see text).

The cross section in Eq. (2.2) mixes all flavors in the sum. Therefore, it is useful to define an
observable that is well suited to explore the effect of flavor in the TMD evolution. We consider this
observable to be the ratio of normalized multiplicities corresponding to different hadron species. In
Fig. 6, the ratio of normalized multiplicities between {π+π−} and {K+K−} final pairs at z2 = 0.5

8
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and y = 0.2 is displayed as a function of PPP2
hT ≡ PPP2

1⊥ = z2
1qqq2

T at the BELLE scale Q2 = 100 GeV2

for the "fixed-scale" evolution scheme, for the evolution parameters {bmax = 1.5, g2 = 0.18}, and
with the {b∗T , glin

np} prescription. If we suppose to switch off the flavor dependence of the intrinsic
parameters, the bT distribution of the TMD FF is controlled by the same Gaussian width 〈PPP2

⊥〉(z)
for all channels. This feature remains valid when performing the Bessel transform to momentum
space, such that the qqq2

T distribution of the cross section can be factorized out of the flavor sum.
Therefore, if we take the ratio of normalized multiplicities at the same z1 we expect the latter to
be independent of PPP2

1⊥ = z2
1qqq2

T . This is indeed the result displayed in the left panel of Fig. 6.
It is a systematic feature of the "fixed-scale" evolution scheme: it holds true for other values of
z1 as well as for other combinations of nonperturbative evolution parameters and nonperturbative
prescriptions. If we account for the flavor dependence of the Gaussian widths 〈PPP2

⊥〉q→h(z), then the
bT distribution is different for the {π+π−} final state from the one for {K+K−}. Consequently, the
ratio of normalized multiplicities has a specific PPP2

1⊥ = z2
1qqq2

T distribution that, of course, changes
with z1. This is indeed the content of the right panel in Fig. 6: the uncertainty band of the 68%
of 200 replicas of Gaussian widths with dot-dashed borders corresponds to z1 = 0.3, the band with
dashed borders to z1 = 0.5, the band with solid borders to z1 = 0.7. Almost all the ratios are smaller
than unity because the PPP2

1⊥ distribution of the fragmentation into kaons seems to be larger than the
corresponding one for pions [2]. In any case, the ratio of normalized multiplicities for different
final hadrons is a useful tool to discriminate among different scenarios in TMD evolution. For
example, if we change evolution scheme the behaviour of the ratio can be reversed.

Figure 7: Left panel: same as in left panel of previous figure but for the "µb" evolution scheme. Right panel:
the ratio between the normalized multiplicities of {π+π−} and {π+K−} final states in the same conditions
and with the same notation as in the left panel.

In Fig. 7, the left panel shows the same ratio of normalized multiplicities in the same conditions
and notation as in the left panel of the previous figure but for the "µb" evolution scheme. In
this scheme, the bT distribution of the TMD FF is influenced also by the collinear part of the
fragmentation function: the dq→h

1 in Eq. (3.1) is evaluated at the running scale µb̂ which is related
to bT . Hence, when performing the Bessel transform of Dq

1 in the cross section, the resulting qqq2
T

distribution depends on the flavor of the fragmenting parton even if the intrinsic parameters do
not, as shown in the figure. Surprisingly, now all the ratios are larger than unity. When including
also the flavor dependence in the intrinsic parameters, the two effects mix up and the uncertainty
bands become larger [7]. in this case, we can argue that experimental data will have a sufficiently
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small error to discriminate among the various replicas of the intrinsic parameters. The right panel
of Fig. 7 displays the ratio between {π+π−} and {π+K−} final states in the same notation and
conventions as in the left panel. All the ratios are now lower than unity. Hence, combining this
result with the content of the left panel could represent a very selective test of the "µb" evolution
scheme: the PPP2

1⊥ distribution of normalized multiplicities for the {π+π−} final state should be
larger than the one for {K+K−} at any z1, while at the same time it should turn out narrower than
the one for {π+K−} at any z1.

Finally, because of charge conjugation symmetry we predict that the ratio between normalized
multiplicities leading to (π+, K−) and (π−, K+) final states should be equal to unity, irrespective of
the choice of evolution schemes, nonperturbative evolution parameters and prescriptions. It would
be interesting to cross-check this prediction by measuring this ratio as a function of PPP2

1⊥.
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