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The calculation of the unpolarized non-singlet transverse momentum dependent fragmentation
function (TMDFF) at next-to-next-to-leading order (NNLO) is presented. The calculation is done
within the framework of the TMD factorization theorem by separate evaluation of the soft factor
and TMD collinear correlator. For the fist time the TMD factorization theorem is confirmed at
NNLO, which is a very strong check of the whole formalism. Using the result of calculation we
extract the matching coefficient onto integrated fragmentation function. Also we extract NNLO
anomalous dimensions, necessary to perform the transverse momentum resummation at next-
to-next-to-next-to-leading-logarithmic accuracy, that is the first time direct evaluation of these
anomalous dimension.
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1. Introduction

Within recent years the interest to the transverse momentum dependent (TMD) distributions,
first introduced in [1, 2], constantly increases. The TMD distributions are the important objects
for description of double-inclusive processes, such as Drell-Yan, Vector Boson/Higgs Production,
Semi-Inclusive Deep Inelastic Scattering (SIDIS) and e+e− → 2 hadrons, at moderate transverse
momentum. All these processes are fundamental for current and future planned high energy col-
liders. For the review of recent status see [3].

The formulation and proof of the TMD factorization theorem is complected. The typical
expression for the hadronic tensor takes the form (here for SIDIS)

W µν(Q,qT ) = Hµν(Q)
∫ d2bT

(2π)2 e−iqT bT ∆ f (x1,bT )∆d(x2,bT )S(bT )+Y, (1.1)

where H is a hard coefficient function, ∆ f is the naive TMD parton distribution function (TMD-
PDF), ∆d is the naive TMD fragmentation function (TMDFF) and S is the soft factor. The structure
of TMD factorization theorem is schematically shown in fig1(left). For the following discussion it
is important to stress that individually the functions ∆ and S are undefined, although the operator
expressions for these objects are known. That happens due to the presence of rapidity divergences
in every term of (1.1). In the product of of components (1.1) rapidity divergences cancel, that is
used in many considerations, e.g. recent NNLO evaluations [4, 5, 6, 7, 8]. In these approaches
one evaluates the TMD cross-section directly on the integrated parton densities, see fig.1(right). In
contrast, we consider the rapidity-divergences-free definition of individual TMD distributions.

The individual TMD distributions can be define with the help of non-Abelian exponentiation
theorem applied to the soft factor. It allows effectively split the soft factor onto a product of two
functions. The latters in the combination with TMD distributions ∆ form a well-defined TMD dis-
tribution (see detailed description in [9, 10, 11]). Due to the universality of soft factor for different
processes, such an approach allows one to describe all TMD processes by universal TMDPDFs and
TMDFFs. The discussed approach has been checked at one-loop for TMDs with various quantum
numbers by many groups [11, 12, 13, 14, 15, 16, 17]. At two-loop some properties of TMDs have
been deduced from cross section calculations [4, 5, 6, 7, 8], however, the comprehensive next-to-
next-to-leading-order (NNLO) analysis has not been done so far. In this proceedings we discuss
the details of the recent NNLO evaluation of the unpolarized TMDFF made by our group [20].

The evaluation of individual TMDs at higher orders is an utterly non-trivial check for their
definition, since starting from the two-loop order, the singularities of various types mix up. Due to
this fact, the choice of the regularization procedure is very important. The regularization scheme
should be implemented in such a way that it takes care about ultraviolet (UV), mass, collinear
and rapidity divergences in the distinguishable manner. Each type of the divergences is to be
cancel by appropriate procedure: renormalization procedure takes care about UV divergences, mass
divergences cancel in the sum of virtual and real graphs, rapidity divergences cancel in the product
of TMD definition components. The rest collinear divergences are the part of low-energy hadron
structure, and can be absorbed into the non-perturbative parton density by matching procedure.
Within the discussed calculation [20] the convenient regularization scheme was elaborated and the
cancelation of all divergences in the appropriate sectors has been checked.

2



P
o
S
(
Q
C
D
E
V
2
0
1
5
)
0
4
4

TMD FF at NNLO Alexey A.Vladimirov

Figure 1: Illustration of TMD factorization theorems for SIDIS is presented. The gray blobs denote the
factorized parts of perturbative series, hard coefficient function (H), TMD distributions (F and D) and soft
factor (S). The dashed lines depict the factorization procedure and and adjusted by scales of corresponding
factorization. The right frame shows the general structure of factorization theorem (1.1). The left frame
shows the TMD factorization theorem with additional matching of TMD distributions on the integrated
parton densities.

The main practical outcome of the NNLO calculation is the matching coefficient of TMDFF
onto the integrated fragmentation function (FF) at NNLO. That allows to perform the NNLO re-
summations for inclusive processes and, thus, fills the gap within TMD phenomenology.

2. Definitions

The soft factor (SF) is a spin and process independent vacuum expectation value of Wilson
lines [9, 10], and it is defined as

S(ks⊥) =
∫ d2b⊥

(2π)2 eib⊥·ks⊥
1

Nc
⟨0|Tr

[
W T †

n W̃ T
n̄
]
(0+,0−,b⊥)

[
W̃ T †

n̄ W T
n

]
(0) |0⟩ , (2.1)

where Wn and W̃n̄ stand for Wilson lines along light-cone directions, and n and n̄ are light-cone
vectors (n2 = n̄2 = 0, n · n̄ = 2). The superscript T on Wilson lines in (2.1) implies subsidiary
transverse links from the light-cone infinities to the transverse infinity. These links guaranty gauge
invariance and are necessary for calculations in singular gauges. Within the Feynman gauge, which
is the gauge used for discussed calculation, the contribution of the transverse links vanish.

The unpolarized collinear matrix element in the position space defined as

∆(0)
i→h(z,bT ) = (2.2)

1
2z

∫ dξ−

2π
e−iξ+P−

Tr∑
X

∫
⟨0|
[
W̃ T †

n̄ ψ
]
(ξ−,0−,b⊥) |X ;Ph⟩ ̸ n/⟨X ;Ph|

[
ψ̄W̃ T

b̄

]
(0) |0⟩

∣∣∣∣∣
s.s.

,

where index i refers to the parton flavor, P is the hadron momentum, z is the Bjorken variable. The
subscript “s.s.” stands for soft subtraction of matrix element. With in the Soft Collinear Effective
Theory (SCET) literature it is known as “zero-bin” subtraction. These terms are equivalent in the
present context. For the used regularization, soft subtraction is equivalent to division of the naively
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calculated colliner matrix element (2.2) by the soft function in Eq. (2.1). That forms the so-called
“pure collinear” matrix element: ∆pure ∼ ∆naiveS−1.

Individually both matrix elements (2.1) and (2.2) have rapidity divergences at every order in
the perturbative expansion. The essential property of the soft factor follows from the non-Abelian
exponentiation of Wilson lines (see modern derivation in [18]). It is stated that the logarithm of the
SF is maximally linear in the logarithmical rapidity divergences. Therefore, soft factor can be split
into two pieces [10],

S̃(Lµ ,L√
δ+δ−) = S̃

1
2 (Lµ ,Lδ+) S̃

1
2 (Lµ ,Lδ−), (2.3)

where we introduce the convenient notation

LX = ln(X2b2e2γE/4).

Variables δ± are rapidity regulators that one uses in the n- and n̄-collinear sectors (our implemen-
tation of it is specified later in Eq. (3.1)). The result of the combination of one piece of the SF and
the collinear correlator (∆) is free from rapidity divergences and hence can be considered as a valid
hadronic quantity. For the unpolarized TMDFF we have

D̃i→h(z,Lµ , lζD) = ZD(lζD)Z
−1
3 ∆̃(0)

i→h(z,Lµ , lζD ,Lδ+) S̃
1
2 (Lµ ,Lδ+) , (2.4)

where we have introduced the notation lζ = ln(µ2/ζ ). The factors ZD and Z3 are the UV renormal-
ization multipliers of the TMD operator and quark field respectively. The ζF and ζD are fractions of
Q2, satisfying ζFζD = Q4, where ζF = Q2/α and ζD = αQ2 with α being arbitrary boost-invariant
real number (in the following we omit the subscripts F, D where unnecessary).

At small values of the impact parameter b the renormalized TMDFF can be factorized again
in

D̃i→h(z,Lµ , lζ ) =
∫ 1

z

dτ
τ3−2ε Ci→ j

( z
τ
,Lµ , lζ

)
d j→h(τ ,µ) , (2.5)

where di→h(ξ ,µ) is the renormalized integrated FF. In Eq. (2.5) and in the rest of this letter. In this
case the TMD factorization is illustrated in fig.1(right).

3. Regularization

The regularization scheme used for the calculation should satisfy several important demands,
such as: it should respect the exponentiation property of Wilson lines; it should match the sin-
gularities of the naively calculated collinear matrix element in the soft limit with the ones of the
SF. Additionally, the chosen regularization scheme should be convenient for multi-loop integral
computations. The investigation of the popular schemes shows that they are inappropriate for
NNLO evaluation, either violate some of demands, ether result to the overcomplecated two-loop
integrals. Finally, our regularization scheme is build as following: We used the modified ver-
sion the δ -regularization, that has been derived from the δ -regularization used by many authors,
e.g. Refs. [11, 13, 14, 19], to regularize the rapidity divergences. To regularize the rest of UV
and infrared divergences we use standard dimensional regularization, while the incoming/outgoing
partons are on-shell and massless.
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In order to match the required demands at multi-loop level we perform the following mod-
ifications of the δ -regularization. First, in order to supply the non-abelian exponentiation, and
hence the relation in (2.3), the δ -regulator should be implemented at the operator level, see e.g. the
discussion in Ref. [18]. With this purpose we modify the definition of Wilson line as

W̃n̄(n)(0) = Pexp
[
−ig

∫ ∞

0
dσA±(σn)

]
→ Pexp

[
−ig

∫ ∞

0
dσA±(σn)eδ±|σ |

]
, (3.1)

where δ± → 0+. Second, in order to match the soft singularities of the naively calculated collinear
matrix element and the soft factor, the δ± in ∆i→h should be rescaled by factor z, i.e. δ → δ/z. This
rescaling is necessary for TMDFF, but not for TMDPDF. Besides the mathematical demands it can
be explained by kinematical arguments. Therefore, in the modified δ -regularization the Feynman
rules for interaction with Wilson line became

1
(k+1 − i0)(k+2 − i0)...(k+n − i0)

→ 1
(k+1 − iδ+)(k+2 −2iδ+)...(k+n −niδ+)

, (3.2)

for soft factor and TMD PDF collinear matrix element, while for TMD FF collinear matrix element

1
(k+1 − i0)(k+2 − i0)...(k+n − i0)

→ 1
(k+1 − iδ+/z)(k+2 −2iδ+/z)...(k+n −niδ+/z)

. (3.3)

Such modified regularization is appropriate for being used in multi-loop calculations and for the
evaluation of the relevant matrix elements separately.

4. Extraction of the matching coefficient

The evaluation of TMD distribution consists in the evaluation of soft factor, the collinear
matrix element and renormalization factors with subsequent recombination into equation (2.2).
At NLO the perturbative expression for TMDFF is

D̃[1]
i→ j = ∆̃[1]

i→ j −
S̃[1]δi j

2
+
(

Z[1]
D −Z[1]

2

)
δi j, (4.1)

where we use superscripts in square brackets to denote the order of the perturbative expansion, e.g.
S = ∑n an

s S[n], with as =
g2

(4π)2 . The rapidity divergences arise in the first and the second terms, and
cancel between them. The last two factors are pure ultraviolet poles. The obtained expression is
singular at ε → 0. These are standard collinear divergences, that are part of parton distribution.
Comparing the perturbative expansion of the left- and right-hand-sides of equation (2.5), we obtain
the following expression for the matching coefficient C at NLO

C̃[1]
i→ j = D̃[1]

i→ j −
d[1]

i→ j

z2−2ε . (4.2)

Note, that in our set of regularization all diagrams contributing to the integrated parton density are
zero. Therefore, the function d(z) consists of UV renormalization constant only. Thus, the UV
singularity of d(z) cancels the remain collinear singularity of (4.1), and we obtain the well known
result [9, 11]

C̃[1]
q→q =

CFas

z2

[
−2Lµ/zPq→q(z)+2z̄+δ (z̄)

(
−L2

µ +2Lµ lζ +3Lµ −
π2

6

)]
, (4.3)
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where Pq→q(z) = ((1+ z2)/(1− z))+ is the quark splitting function. The plus-distribution is de-
fined as ( f (z))+ = f (z)−δ (z̄)

∫ 1
0 dy f (y).

The NNLO TMD reads

D̃[2]
i→ j = ∆̃[2]

i→ j −
S̃[1]∆̃[1]

i→ j

2
−

S̃[2]δi j

2
+

3S̃[1]S̃[1]

8
δi j

+
(

Z[1]
D −Z[1]

2

)(
∆̃[1]

i→ j −
S̃[1]+ δi j

2

)
+
(

Z[2]
D −Z[2]

2 −Z[1]
2 Z[1]

D +Z[1]
2 Z[1]

2

)
δi j. (4.4)

The first and the second lines are individually free of rapidity divergences. One can see that at two
loops the structure of rapidity divergences cancelation is cumbersome. Explicit evaluation of all
ingredients at NNLO confirm the cancelation of rapidity divergences and hence the correctness of
TMD definition and NNLO.

The matching coefficient at two-loop level is given by the combination

C̃[2]
i→ f = D̃[2]

i→ f −C̃[1]
i→k ⊗

d[1]
k→ f

z2−2ε −
d[2]

i→ f

z2−2ε , (4.5)

where the symbol ⊗ denotes Mellin convolution in the Bjorken variable z, while k is a flavor index.

5. Renormalization group

The renormalization group equations of the TMDFF and the integrated FF provide also im-
portant checks for our calculation. We have that

µ2 d
dµ2 D̃i→h =

1
2

γ i
D D̃i→h

γD = Γi
cusplζ − γ i

V , (5.1)

where Γcusp is the cusp anomalous dimension. We also have an evolution in the rapidity parameter

ζ
d

dζ
D̃i→h =−D iD̃i→h

−2µ2 d
dµ2 D i = ζ

d
dζ

D i =−Γi
cusp. (5.2)

Applying these equations on the definition of matching procedure (2.5) and using the DGLAP
evolution for the integrated FF, the logarithmical part of matching coefficient can be predicted.
Note, that at NLO no extra information is needed, while at NNLO one need the finite part of NLO
calculation. Within our calculation we perform evaluation of all terms in the matching coefficient
and we found complete agreement with the renormalization group predictions. That is a good
check of the final result.

The anomalous dimension D is known up to two-loop order, and originally was extracted from
the analysis of Drell-Yan processes. In fact our consideration is of more generic form, and allows
to extract the function D for all TMD processes from the explicit expression for the soft factor. In
this way we confirm that anomalous dimension D is process independent.
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The evolution equations allow one to resum rapidity logarithms and rewrite the Wilson coeffi-
cient in a more compact form

C̃i→ j = exp
[
−D iL√ζ

]
C̃i→ j . (5.3)

The most general structure of C̃i j of the n-th perturbative order is

C̃
[n]
i j =

2n

∑
k=0

C̃
(n;k)
i j Lk

µ . (5.4)

The coefficients C (n;k) are related by the recursive relation

(k+1)C̃ (n;k+1)
i→ j =

n

∑
r=1

Γ[r]
cusp

2
C̃

(n−r;k−1)
i→ j −

γ i[r]
V −2(n− r)β [r]

2
C̃

(n−r;k)
i→ j − C̃

(n−r;k)
i→k ⊗

P
[r]
k→ j

z2 .(5.5)

Thus, given the expressions for the anomalous dimensions one needs only the boundary coefficients
C̃ (n,0) in order to reproduce the complete expression for the matching coefficient.

6. Results

To complete the discussion we present the explicit expressions for the quark TMD FF bound-
ary terms up to NNLO. They are

C̃
(0;0)
q→q = δ (z̄), (6.1)

C̃
(1;0)
q→q =

CF

z2

[
(4p(z) lnz+2z̄)++δ (z̄)

(
6− 3

2
π2
)]

,

where p(z) = 1+z2

1−z . The corresponding quark-antiquark coefficients are zero.
The NNLO coefficient is convenient to present in the following form

C̃
(2;0)
q→q (z) =C2

FQF(z)+CFCAQA(z)+TRN f QN(z), C̃
(2;0)
q→q̄ (z) =CF

(
CF − CA

2

)
Qqq̄(z). (6.2)

Then the functions Qi are

QF(z) =
1
z2

{
p(z)

[
104Li3(z)−4Li3(z̄)+4ln z̄Li2(z̄)+48lnzLi2(z̄)−2ln2 z̄ lnz+82ln z̄ ln2 z

−24ln3 z+
39
2

ln2 z−
(

8+
44π2

3

)
lnz−104ζ3

]
+ z̄
[
−24Li2(z̄)+4lnz ln z̄+42− π2

3

]
+9(1+ z) ln3 z+

25
2
(−3+ z) ln2 z+(−22+62z) lnz+2ln z̄

}
+

+δ (z̄)
(
−13

8
− 55π2

3
−12ζ3 +

1037π4

360

)
,

7
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QA(z) =
1
z2

{
p(z)

[
12Li3(z)+4Li3(z̄)−4ln

(
z̄
z2

)
Li2(z̄)+3ln3 z+4ln z̄ ln2 z

−11
6

ln2 z+
10(7−π2)

3
lnz+2ζ3 −

404
27

]
+ z̄
(

4Li2(z̄)−
π2

3
+

44
3

)
+(8+2z) ln2 z−2ln z̄+

(
116

3
− 74

3

)
lnz
}
+
+δ (z̄)

(
6353
81

− 443π2

36
− 278

9
ζ3 +

91π4

90

)
,

QN(z) =
1
z2

[(
2
3

ln2 z− 20
3

lnz+
112
27

)
p(z)− 16

3
z̄ lnz− 4

3
z̄
]
+

+δ (z̄)
(
−2717

162
+

25π2

9
+

52
9

ζ3

)
,

Qqq̄(z) =
1
z2

{
p(−z)

[
8Li3(−z)+16Li3(z)−16Li3

(
1

1+ z

)
+8lnz(Li2(−z)−Li2(z))

−6ln3 z+
8
3

ln3(1+ z)+12ln2 z ln(1+ z)− 4π2

3
ln(1+ z)+4ζ3

]
−8z̄Li2(z̄)+8(1+ z)

(
Li2(−z)+ lnz ln(1+ z)+

π2

12

)
−8(2+ z) ln2 z+(−38+10z) lnz−30z̄

}
+

+δ (z̄)
(

187
4

−6π2 −30ζ3 +
31π4

45

)
.

These expressions represent the main result of our calculation. The further details can be found in
[20].

7. Conclusion

Using explicit definition of TMDFF as the product the collinear matrix element and the square
root of the soft function in the coordinate space, we perform NNLO evaluation and analysis of
TMDFF. The calculation performed within the standard QCD and in Feynman gauge, includes the
independent computation of the soft function and the collinear matrix element, and their subsequent
recombination into a TMD. This is a first calculation of individual TMDs at NNLO.

In order to perform the calculation we have reformulated the rapidity regularization of Ref. [11].
The used regularization scheme (modified δ -regularization scheme) is suitable for the multi-loop
evaluation. Within this regularization we obtain the complete analytical expression for the TMDFF,
and comprehensively investigate the structure of soft/rapidity singularities and their cancellation.
The cancellation of singularities provides a strong check of the final result.

As a further check we find a complete agreement between the logarithmical part of the final
result and the known predictions of renormalization group. The soft factor that has been evalu-
ated in this work, is universal and spin-independent, and thus can be used for the calculation of all
TMDs at NNLO. The explicit analytical expression for the soft factor allows us directly extract the
function D(bT ) (the anomalous dimension of rapidity parameter evolution), and show it universal-
ity. We found complete agreement with known expressions for D(bT ) extracted from the analysis
of Drell-Yan process.
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Finally, the calculation of the TMDFF performed in this work allows us to extract the relevant
perturbative matching coefficient at NNLO, necessary to perform the resummation of large loga-
rithms at NNNLL. The applied method can be readily used to obtain other relevant perturbative
ingredients. The talk is bases on the ref.[20].
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