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1. Introduction

Transverse-momentum dependent parton density functions (TMD pdfs in what follows) extent
the idea of collinear pdfs, which accumulate mass singularities in any order of perturbative expan-
sion, making it possible to apply the QCD factorisation approach to the inclusive hadron processes
(e+e− to hadrons, DIS) [1]. In ’more differential’ cross-sections, which one deals with in the semi-
inclusive reactions (semi-inclusive DIS, Drell-Yan, Higgs, vector boson, heavy-flavour production)
factorisation often implies intrinsic transverse-momentum dependence of non-perturbative pdfs,
which must be constructed in such a way to absorb not only mass, but also rapidity singularities
[2, 3, 4, 5, 7]. With TMD pdfs one gets access to the three-dimensional structure of the nucleon
in the momentum space, which is actively investigated in ongoing and planned experiments at the
LHC, JLab + JLab 12 GeV upgrade, RHIC, EIC etc., providing an incentive to rapid theoretical
progress in the field (see, e.g., [8, 9] and Refs. therein).

As compared to the quark TMD case, the gauge-invariant gluon TMD exhibits much more
involved structure of the gauge links (Wilson lines), so that the path-dependence brings about extra
complications to the understanding of (non-)universality of the TMD pdfs [10, 11]. On the other
hand, this path-dependence allows us to manipulate freely with the gauge links entering the operator
definition of the gTMD. In the present paper we propose a quantum-field theoretic approach to the
definition of the gluon TMD (gTMD) making use of the arbitrariness of the trajectories of the
Wilson lines to formulate evolution of the gTMD in terms of the equations of motion in the so-
called generalised loop space, which elements are the hadronic matrix elements of the arbitrary
Wilson loops.

2. Operator structure of TMD pdfs

Following the standard approach one derives the operator definitions of the TMD pdfs starting
with the factorisation of a given process in a convenient gauge, which yields generic evidently
gauge-dependent correlators:

Qg−d(k;P,S) =
∫

d4z e−ikz 〈h| ψ̄(z)ψ(0) |h〉 (2.1)

for quarks and

Gµν

g−d(k;P,S) =
∫

d4z e−ikz 〈h| A µ(z)A ν(0) |h〉, (2.2)

for gluons. In what follows we focus on the gluon case. Gauge invariance of these correlators
can be achieved by inserting a Wilson line between the field operators, whose underlying path γ is
determined by the factorisation scheme [2, 4, 12, 13]:

Gµν |µ ′ν ′
g−i (k;P,S) =

∫
d4z e−ikz 〈h|F µν(z) Wγ F µ ′ν ′(0) |h〉, (2.3)

where the field strength is defined in the adjoint representation

F µν = ∂
µA ν −∂

νA µ − ig[A µ ,A ν ], Fµν = Fa
µνT a. (2.4)

Gauge-invariant gTMD, that is a hadronic matrix element, which corresponds to the distribu-
tion of the gluons with momentum k = (k+,0−,k⊥) inside the hadron h with momentum P and spin
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S, is obtained by integrating over the minus-light-cone component of the partonic momentum and
projecting onto the transverse Lorentz indices:

Gi j(x,k⊥;P,S)∼
∫

dk− G+i|+ j(k;P,S) = (2.5)∫
dz−d2z⊥ e−ik+z−−ik⊥z⊥ 〈h|F+i(0+,z−,z⊥) Wγ F+ j(0+,0−,0⊥) |h〉. (2.6)

Factorisation in the small-x regime entails another definition of the gTMD having different structure
[14]. The latter can be related, however, to the moderate-x definition (2.6), see Ref. [15].

Let us explore a possibility of an alternative approach to the definition of the TMD pdfs.
We construct first a generic fully gauge-invariant (by construction) and maximally path-dependent
object consisting of the Wilson loops defined on the set of absolutely arbitrary trajectories γi:

Wγi = Pγi exp
[∮

γi

dζµA µ(ζ )

]
. (2.7)

So far we do not assume any factorisation scheme and even do not identify the processes to which
those objects are supposed to be applicable. Given the arbitrariness of the paths, one is able to
adjust them to a specific factorisation scheme by performing the evolution in the coordinate space.
Hence we end up with an object which can be further associated with a realistic gauge-invariant
TMD pdf.

3. Equations of motion in the loop space

Shape variations (or evolution in the coordinate representation) of arbitrary Wilson loops can
be consistently formulated in terms of the equations of motion in the loop space [16, 17]. They
are integral-differential equations which the elements of this space (generic Wilson loops) obey, if
the underlying contours γi on which the path-ordered exponentials of the gauge fields are defined
experience certain variations. The variations of the contours give rise to the variations of the ex-
ponentials themselves, the latter being described by the infinite set of the Makeenko-Migdal loop
equations [16, 17, 18, 19, 20]. More specifically, the elements of the loop space are the vacuum
matrix elements of products of the Wilson loops, that is

〈0|W n
γ1,...γn

|0〉= 〈0|T Wγ1 · · ·Wγn |0〉 (3.1)

These fundamental gauge-invariant (by construction) degrees of freedom obey the Makeenko-
Migdal loop equations (in the large-Nc limit)

∂
ν δ

δσµν(x)
〈0|W 1

γ |0〉= Ncg2
∮

γ

dzµ
δ
(4)(x− z)〈0|W 2

γxzγzx
|0〉, (3.2)

where the area and path differential operators are defined as follows [16, 18, 17]:

• Area derivative describes the behaviour of the Wilson loop under the infinitesimal variations
of the area δσµν at a given point

δ

δσµν(z)
〈0|Wγ |0〉= lim

|δσµν (z)|→0

〈0|Wγδγx |0〉−〈0|Wγ |0〉
|δσµν(z)|

(3.3)
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• Path derivative deals with the infinitesimal path extensions and contractions δ z−1
µ γδ zµ at a

given point

∂µ〈0|Wγ |0〉= lim
|δ zµ |→0

〈0|W
δ z−1

µ γδ zµ
|0〉−〈0|Wγ |0〉
|δ zµ |

(3.4)

These differential operators in the loop space determine the evolution of the Wilson loops
in the coordinate representation. They can also be related to the energy/rapidity evolution of the
TMDs with pure light-like Wilson lines [21, 22]. In other words, starting from a loop having a
given shape, one can come to a loop with another shape by solving the above evolution equations.
This is exactly what is needed to adjust a generic Wilson loop to some specific geometrical layout
prescribed by a factorisation framework.

4. Stokes-Mandelstam gluon TMD

Let us show how this strategy can be practically implemented. Making use of non-Abelian
Stokes’ theorem (see Ref. [17] and Refs. therein)

Pγ exp
[∮

γ

dζρA ρ(ζ )

]
= PγPσ exp

[∫
σ

dσρρ ′(ζ )F
ρρ ′(ζ )

]
, (4.1)

where Pσ stands for the area-ordering, and the Mandelstam formula

δ

δσµν(x)
Pγ exp

[∮
γ

dζρA ρ(ζ )

]
= Pγ F µν(x)exp

[∮
γ

dζρA ρ(ζ )

]
, (4.2)

we see that the generic correlation function (2.3) (Fourier-transformed to the coordinate space) can
be represented in the following form

G̃µν |µ ′ν ′(z;P,S) =
δ

δσµν(z)
δ

δσµ ′ν ′(0)
〈h|W

γ [z,0] |h〉 (4.3)

=
δ

δσµν(z)
δ

δσµ ′ν ′(0)
∑
X
〈h|W ′

γ [z] |X〉〈X |W
′
γ [0] |h〉. (4.4)

We coin this representation the Stokes-Mandelstam gTMD definition. The key feature of this
definition (and of the entire approach) is that one first calculates the hadronic matrix element of an
arbitrary Wilson loop

〈h|W
γ [z,0] |h〉,

choosing its shape the most convenient for the practical purposed. In particular, in the situations
where the non-Abelian exponentiation is applicable (see, e.g., Refs. [23])

〈h|W
γ [z,0] |h〉= exp

[
∑anW (n)

]
, W (n) = hadronic correlators, (4.5)

one can even obtain an explicit expression for this matrix element and thereafter evaluate the area
derivatives in terms of the fundamental hadronic correlation functions. The latter can be taken, for
instance, from lattice simulations. Let us illustrate the use of this framework by a simple Abelian
example.
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4.1 Example: Abelian exponentiation

Wilson loops in the Abelian gauge theory are known to exponentiate

〈h|Wγ |h〉 = 〈h|Pγ exp
[∮

γ

dζρA ρ(ζ )

]
|h〉 (4.6)

= exp
[
−g2

2

∮
γ

dζρ

∮
γ

dζ
′
ρ ′ Dρρ ′(ζ −ζ

′)

]
, (4.7)

where the basic hadronic correlator reads

Dρρ ′(ζ −ζ
′) = 〈h|Pγ Aρ(ζ )Aρ ′(ζ ′)|h〉. (4.8)

For the sake of simplicity, let us consider a spinless hadron, which entails the following pa-
rameterisation of the basic correlator (4.8)

Dρρ ′(z) = gρρ ′ D1(z,P)+∂ρ∂ρ ′ D2(z,P)+{Pρ∂ρ ′} D3(z,P)+PρPρ D4(z,P). (4.9)

Given this representation and the exponentiation, the area derivative can be evaluated straightfor-
wardly

δ

δσµν(z)
〈h|Wγ |h〉=−

g2

2

[
δ

δσµν(z)

∮
γ

dζρ

∮
γ

dζ
′
ρ ′ Dρρ ′(ζ −ζ

′)

]
〈h|Wγ |h〉 (4.10)

After taking the path derivative ∂µ , the terms containing only one derivative disappear since

∂
z
µ

[∮
γ

dζ
′
µ∂ρDi(z−ζ

′)

]
= 0, (4.11)

and the non-vanishing terms are

• the standard ‘Makeenko-Migdal’ term:∮
γ

dζ
ν

∂
2 D1(z,P) (4.12)

• the hadron momentum-dependent term, obviously absent in the loop space with vacuum
matrix elements

∮
γ

dζ
ν (P∂ )2 D4(z,P) (4.13)

Therefore, the shape evolution equation for the hadronic Wilson loops in the Abelian gauge
theory is given by

∂
z
µ

δ

δσµν(z)
〈h|Wγ |h〉= (4.14)

−g2

2

[∮
γ

dζ
ν

(
∂

2 D1(z,P)+(P∂ )2 D4(z,P)
)]
〈h|Wγ |h〉. (4.15)
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Taking into account that for the vacuum matrix elements

∂
2D1(z) =−δ

(4)(z),

and that D4 = 0 in vacuum, one easily re-obtains the Makeenko-Migdal equation in the leading
order:

∂
z
µ

δ

δσµν(z)
〈0|Wγ |0〉= g2

∮
γ

dζ
ν

δ
(4)(z−ζ ), (4.16)

as well as the area law in the 2D-case∮
γ

dζρ

∮
γ

dζ
′
ρ ′ Dρρ ′(ζ −ζ

′) = Sγ , (4.17)

〈0|Wγ |0〉= exp
[
−g2

2
Sγ

]
. (4.18)

Surely, Eqs. (4.16,4.17,4.18) are not valid for the ‘hadronic’ Wilson loops (4.7) even in the Abelian
case.

To conclude, we have proposed a new definition of the generic gluon TMD, which allows us
to work directly with the entirely gauge-invariant and maximally path-dependent hadronic matrix
elements before introducing a realistic gluon TMD. All necessary information is absorbed in the
basic hadronic correlator (4.8) and the evolution equation (4.15) generalises the Makeenko-Migdal
equation for the Abelian gauge theory to the case of the ‘hadronic’ loop space. Further progress
will be presented in a separate work [24].
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