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1. Introduction

The principle of factorization underlies all theoretical predictions for hadronic processes. Sim-
ply put, factorization is the statement that short and long distances contributions to physical pro-
cesses can be separated, up to corrections suppressed by powers of the relevant large scale in the
process. The predictive power gained from this result stems from the fact that the incalculable long
distance effects are universal and defined in an unambiguous way in terms of matrix elements. As
a consequence, the non-perturbative long distance effects can be extracted in one process and then
used in another. In general, proving factorization in QCD is a difficult task, and readers are referred
to Refs. [1, 2, 3]) for reviews.

Soft collinear effective theory (SCET) [4, 5, 6, 7] was developed as an effective field theory
(EFT) that would provide a framework for reformulating proofs of factorization in an operator for-
malism and for systematically treating power corrections. One consequence of an EFT approach is
that it allows standard renormalization group techniques to be used for the resummation of double
(Sudakov) logarithms as well as for single logarithms, which is often necessary for making per-
turbative calculations of high energy scattering events converge. A number of QCD factorization
proofs were reproduced in Ref. [8] and subleading corrections were considered for a number of
processes (see for example Refs. [9, 10, 11, 12, 13, 14, 15, 16, 17]).

One of the subtleties that makes proofs of factorization so difficult is the existence of the so-
called Glauber region. Proofs of factorization rely on a set of powerful theoretical tools: power
counting, pinch analysis via the Landau equations [18], and the Coleman-Norton Theorem [19].
The Landau equations allow for the isolation of pinch singularities which, via the Coleman-Norton
Theorem can be identified with long-distance (infrared) physics. Generically pinch singularities
can be identified with one of three momentum regions: collinear, soft, or Glauber. In the collinear
region internal propagators become collinear with external particles, and in the soft region they
become soft relative to external particles. In either of these limits particles can approximately stay
on their mass shell. The Glauber region, however, is special as it corresponds to off-shell modes
(Glauber modes) with k⊥ � k+,k−, which leads to a two-dimensional Coulomb-like interaction
between and amongst collinear and soft particles [20, 21]. The presence of Glauber interactions is
problematic because they can destroy factorization [21, 22]. Fortunately, it has been shown that for
sufficiently inclusive quantities the sum over final-state cuts cancels unwanted pinches, and thereby
eliminates Glauber contributions [23, 24, 25].

SCET as it was originally formulated, however, did not include Glauber type interactions. An
attempt to include Glauber interactions between collinear quarks moving in opposite directions in
SCET was made Ref. [26] where factorization of the Drell-Yan cross section was reconsidered.
Unfortunately, this attempt did not account for the overlap between different moment regions and
failed as a result. The analysis was taken up in Ref. [27] where it was concluded that “for the
exclusive Drell-Yan amplitude the correct effective theory would require Glauber modes.” Though
the authors did not consider under which circumstances the contribution from Glauber interactions
cancel. In addition, a number of groups have considered the role of Glauber interactions between
collinear and soft degrees of freedom in dense QCD matter [28, 29, 30].

A second, seemingly unrelated issue concerning the formulation of SCET was raised in Refs.
[31, 32], where it was pointed out that Regge behavior appears to fall outside of the usual organizing
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scheme of SCET. Specifically, Regge behavior refers to the emergence of power-law behavior for
scattering amplitudes. In perturbative QCD this arises out of a summation of ladder graphs which
gives rise to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation [33, 34] (see Ref. [35]
for a very readable treatment). The solution of the leading logarithmic (LL) BFKL equation gives
the total cross section for high energy scattering with just such a power law form. Clearly, as an
EFT of QCD at high energy SCET needs to be able to reproduce the BFKL results.

Recently there has been renewed activity in including the Glauber contribution in SCET: Stew-
art and Rothstein have presented preliminary results in formulating the operator basis for Glauber
interactions [36], and Refs. [37, 38] showed how the Glauber contribution gives rise to Regge
behavior. In this talk, after a brief review of SCET, I discuss the importance of the Glauber contri-
bution in general and how Glauber interactions in SCET give rise to the BFKL equation.

2. SCET: a brief review

SCET describes the dynamics of highly energetic particles moving close to the light-cone in-
teracting with a background field of soft quanta. The interaction of the collinear particle with the
background introduces a small residual momentum component into the light-like collinear mo-
mentum so that collinear particles have momentum pµ = Qnµ + pµ

⊥+ kµ where nµ = (1,0,0,−1).
Momentum is split into the large component Q, the intermediate (soft) component p⊥ ∼ Qλ , and
the residual (ultra-soft or usoft) piece kµ ∼ Qλ 2, with λ � 1 a small parameter. However, the
interaction of a collinear particle with the soft background is not the only possibility. As shown in
Fig. 1 a collinear quark (dashed line) can also radiate one (or more) collinear gluons (spring with
line through it). These types of interactions are allowed since they do not require the gluon to have
a large invariant mass: any collinear particle can decay into any number of collinear particles. As

p  =   Q nµ µ1
2

k  =   Q z nµ µ1
2

q  =   Q (1-z) nµ µ1
2

q  = 02

Figure 1: SCET collinear splitting allowed for any momentum fraction z.

a consequence the SCET Lagrangian consists of usoft, soft, and collinear sectors, and is systemati-
cally organized in powers of the small parameter λ . In Table 1 the effective theory quark and gluon
fields are given along with their power counting in λ . The power counting is assigned such that in
the action the kinetic terms for these fields are order λ 0. For instance, for an usoft gluon setting∫

d4xusAus∂
2Aus ∼ λ 0 and using d4xus ∼ λ−8 and ∂ 2 ∼ λ 4 gives Aµ

us ∼ λ 2.
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Type Momenta pµ = (p+, p−, p⊥) Fields Field Scaling
collinear pµ ∼ (λ 2,1,λ ) ξn,p λ

(A+
n,p, A−n,p, A⊥n,p) (λ 2,1,λ )

soft pµ ∼ (λ ,λ ,λ ) qs,p λ 3/2

Aµ
s,p λ

usoft kµ ∼ (λ 2,λ 2,λ 2) qus λ 3

Aµ
us λ 2

Table 1: Power counting for the effective theory quarks and gluons.

To illustrate some important properties of SCET consider the quark sector of the Lagrangian.
It can be split into two pieces: one coupling collinear to soft

Lcs = ξ̄n,p′ in ·D
n̄/
2

ξn,p , (2.1)

where ξn is the collinear quark field, n̄ = (1,0,0,1), and in ·D = in · ∂ + gn ·As. This expression
looks very much like the HQET Lagrangian with the velocity vµ replaced with the light-like vector
nµ , and was first derived in Ref. [39]. The second piece of the collinear Lagrangian consists of
interactions of only collinear particles among themselves

Lc = ξ̄n,p′

{
gn ·Anq + iD/⊥c

1
in̄ ·Dc

iD/⊥c

}
n̄/
2

ξn,p . (2.2)

The form of terms in the Lagrangian are restricted to this minimal set by the symmetries exhibited
by SCET. These include invariance under separate collinear and soft gauge transformations [7],
invariance under a global U(1) helicity spin symmetry, and invariance under certain types of repa-
rameterizations of the collinear sector of the Lagrangian [40, 41].

A remarkable consequence of the gauge symmetries of SCET is the factorization of (u)soft
and collinear effects. For example, by introducing the usoft Wilson line

Y (x) = Pexp
(

ig
∫ x

−∞

ds n ·Aus(ns)
)
, (2.3)

and redefine the collinear fields

ξn,p = Y ξ
(0)
n,p Aµ

n,q = YA(0)µ
n,q Y † , (2.4)

the usoft gluons decouple from the collinear fields, i.e. Lcs → 0 in Eq. (2.1), and the collinear
Lagrangian becomes independent of soft physics. At higher orders in the SCET expansion this
decoupling does not occur, and factorization is broken. However, since higher order terms are
suppressed breaking of the soft-collinear factorization is a small effect. This property of SCET
allows us to obtain factorized forms of observables in a framework that is systematic.

A crucial aspect of separating usoft (or soft) and collinear degrees is the requirement that only
one field has support in overlapping momentum regions. For example, collinear momentum in loop
integrals may become usoft (while remaining collinear) which would overlap with the contribution
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of the usoft modes in the same loop integral. This leads to double counting, which must subtracted.
If the fields in the Lagrangian are defined in a non-overlapping way this leads to the so-called
zero-bin subtraction which removes any double counting [42].

We have not yet discussed the interaction of collinear particles with quanta having soft mo-
mentum scaling. An interaction between a soft particle and a collinear particle put the collinear
particle offshell and so these types of interactions do not appear in the SCET Lagrangian. As a
result soft particles can be trivially included in the theory by adding the Lagrangian for soft quarks
and gluons with no interaction terms between soft and collinear. Typically we only need to consider
SCET with collinear and usoft components (known as SCETI), or with collinear and soft compo-
nents (known as SCETII). There is an important difference SCETI and SCETII which makes SCETII

a much more challenging theory to work with. In SCETI there is a natural distinction between the
collinear and usoft sectors since these modes have parametrically different invariant masses. In
SCETII there is no distinction between the invariant masses of the soft and collinear modes and
they can be interchanged via boosts. The most important consequence of the latter property is that
SCETII requires an additional rapidity regulator to maintain the independence of soft and collinear
modes [44, 43] in the theory. Fig. 2 shows the momentum regions of SCETI and SCETII, along
with a mass-shell hyperbola for fixed invariant mass and fixed transverse momentum. The location
of collinear, anti-collinear, and soft momentum scaling on the hyperbola is indicated. Usoft mo-
mentum is located in the lower left part of the graph and is clearly not on the same invariant-mass
hyperbola as collinear momentum.

k+

k�

Q

�Q

�2Q

�2Q �Q Q

n-coll.

n̄-coll.

soft

Figure 1. The mass-shell hyperbolae showing the distinction between the di↵erent sectors [5]. The

separation between soft and collinear modes is arbitrary and leads to rapidity divergences. The soft

sector has two distinct rapidity (UV) divergences that must cancel with rapidity (IR) divergences

arising from the collinear sector.

Let us now see how factorization of the soft from collinear modes leads to rapidity diver-

gences. Consider the full theory one loop vertex correction. The relevant scalar integral is

given by

If =

Z
[dnk]

1

(k2 � M2)

1

(k2 � n · kn̄ · p1 + i✏)

1

(k2 � n̄ · kn · p2 � i✏)
(4.3)

This integral is finite in UV as well as the IR. In the e↵ective theory there are three

contributions. A soft integral coming from taking the limit kµ ! (M, M, M)

IS =

Z
[dnk]

1

(k2 � M2)

1

(�n · k + i✏)

1

(�n̄ · k + i✏)
(4.4)

and two collinear integrals (In, In̄) of the form

In =

Z
[dnk]

1

(k2 � M2)

1

(k2 � n · k n̄ · p1 + i✏)

1

(�n̄ · k + i✏)
. (4.5)

Given that the full theory graph is IR finite, so must be the sum of the e↵ective theory

graphs. Let us consider the soft graph integrating over k?.

IS ⇠
Z

[d2k](n · k n̄ · k � M2)�2✏ 1

(�n · k + i✏)

1

(�n̄ · k + i✏)

(4.6)

We see that the relevant region of phase space lives on the hyperbola n · k n̄ · k ⇠ M2, shown

in figure 1. O↵ the hyperbola the integral becomes scaleless. Given this restriction, we note

that the integral diverges when the rapidity (n · k/n̄ · k) approaches infinity or zero. These

divergences are not regulated by dimensional regularization and correspond to the rapidity

divergences that arise when the soft integral overlaps with the two collinear rapidity regions.

This is illustrated in figure (4). On the other hand, if we consider the collinear n diagram

– 9 –

Figure 2: The momentum regions of SCETI and SCETII, and a mass-shell hyperbola with fixed invariant
mass. Collinear, anti-collinear and soft modes are indicated. Usoft modes sit in the lower left part of the
plot.
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3. The Glauber region

The best way to understand the Glauber region is to consider the scattering of two high energy
quarks moving in opposite directions q(p1) + q(p2)→ q(p′1) + q(p′2) with large invariant mass
s = (p1 + p2)

2 and small momentum transfer t = (p1− p′1)
2 � s. The leading contribution is an

exchange of an off-shell gluon between the quarks, resulting in a two-dimensional Coulomb like
potential in transverse momentum. The diagram to consider is that in Fig. 3(a). Take all quarks to

k = p1 − p′
1

(b)

k = p1 − p′
1

(a)

p2

p1 p′
1

p2

p′
1

p′
2 p′

2

p1

FIG. 1: Leading order contribution to forward quark-quark scattering at high energy: (a) QCD

diagram, (b) SCET diagram (dashed lines indicate collinear quarks, and dotted lines Glauber

gluons).

of Ref. [29, 30]. The coefficient of the rapidity divergent term is called the gluon Regge
trajectory which is infrared (IR) divergent. We then go on to consider the real emission of
a soft gluon from the Glauber interaction and derive the Lipatov vertex. With these results
in hand we calculate the total cross section for the forward scattering of high energy quarks.
We find that at next-to-leading order in αs this expression also has a rapidity divergence.
Absorbing this rapidity divergence into a rapidity counter-term allows us to derive a rapidity
RGE which is the famous BFKL equation. This then demonstrates the emergence of Regge
behavior in SCET from Glauber interactions between collinear particles.

We use SCET to study the scattering of two high energy quarks moving in opposite
directions q(p1) + q(p2) → q(p′

1) + q(p′
2) with large invariant mass s = (p1 + p2)

2 and small
momentum transfer t = (p1 − p′

1)
2 ≪ s. We also restrict ourselves to perturbative values of

t, where t ≫ Λ ∼ 1 GeV. At leading order in the SCET power counting such an interaction
can be described by the exchange of an off-shell gluon between the quarks, resulting in
a two-dimensional Coulomb like potential in transverse momentum. To see how such an
operator arises in SCET we start with QCD and match onto SCET degrees of freedom. The
QCD diagram is given in Fig. 1(a). For the sake of matching we can take all the quarks
to be massless and on-shell. In addition, the momentum p⃗1 defines the z-axis. Then, the
incoming momentum can be expressed in terms of two light-like vectors nµ = (1, 0, 0, 1) and
n̄µ = (1, 0, 0, −1):

pµ
1 =

√
s

2
nµ pµ

2 =

√
s

2
n̄µ . (1)

The outgoing momentum can be expressed in a Sudakov decomposed form as well:

p′µ
1 =

1

2
(
√

s − n̄ · k) nµ − 1

2
n · k n̄µ − kµ

⊥ (2)

p′µ
2 =

1

2
n̄ · k nµ +

1

2
(
√

s + n · k) n̄µ + kµ
⊥ .

3

Figure 3: Leading order contribution to forward quark-quark scattering at high energy: (a) QCD diagram,
(b) SCET diagram (dashed lines indicate collinear quarks, and dotted lines Glauber gluons).

be massless and on-shell, and let the momentum ~p1 define the z-axis. Then, the incoming momen-
tum can be expressed in terms of two light-like vectors nµ = (1,0,0,1) and n̄µ = (1,0,0,−1):

pµ

1 =

√
s

2
nµ pµ

2 =

√
s

2
n̄µ . (3.1)

The outgoing momentum can be expressed in a Sudakov decomposed form as well:

p′µ1 =
1
2
(
√

s− n̄ · k)nµ − 1
2

n · k n̄µ − kµ

⊥ (3.2)

p′µ2 =
1
2

n̄ · k nµ +
1
2
(
√

s+n · k) n̄µ + kµ

⊥ .

The outgoing quarks are taken to be on-shell so they must have

n · k = −~k2
⊥√

s− n̄ · k n̄ · k =
~k2
⊥√

s+n · k . (3.3)

In the forward region we have k2 = n ·k n̄ ·k+~k2
⊥= t so that kµ

⊥∼
√

t and the above equation implies
n · k ∼ n̄ · k ∼ t/

√
s� kµ

⊥. In this region the out-going momenta reduce to

p′µ1 ≈
√

s
2

nµ +
~k2
⊥

2
√

s
n̄µ − kµ

⊥ p′µ2 ≈
~k2
⊥

2
√

s
nµ +

√
s

2
n̄µ + kµ

⊥ , (3.4)
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and the invariant mass of the exchanged gluon is k2 ≈−~k2
⊥, which gives rise to a two-dimensional

coulomb-like interaction between the collinear quarks.
The presence of Glauber interactions is problematic because they can destroy factorization [21,

22], though for the right variables and for sufficiently inclusive quantities the sum over final-state
cuts cancels unwanted Glauber contributions [23, 24, 25]. However, it has recently been pointed
out by Gaunt [45] that even for sufficiently inclusive observables there are some variables where
Glauber contributions do not vanish. In particular, for hadronic transverse energy ET in hadron-
hadron collisions, the classic Collins-Soper-Sterman argument for the cancellation of Glauber glu-
ons breaks down at the level of two Glauber gluons exchanged between the spectators.

In fact the presence of Glauber interactions can be seen when comparing calculations that as-
sume cancellation of Glauber contributions with (data tuned) Montecarlo studies. Ref [46] studied
the effect of underlying events (UEs) on the hadron-level transverse-energy distribution in Higgs
boson production at the LHC at 8 and 14 TeV. The UE is thought to arise due to secondary multiple
interactions between the colliding hadrons, and is presumably primarily due to Glauber exchange.
The authors find that “the effect of the UE on the ET distributions is severe, making them much
broader and moving the peak to much higher values of ET .” Fig. 4 are plots from Ref [46] which
show the differential in ET cross section for Higgs production at the LHC for different hadronic
transverse momentum cuts (histograms) along with the prediction that assumes cancellation of
Glauber contributions (red curve). These plots clearly demonstrate that UEs are important on even

We present results using the default parameters present in Herwig++ version 2.6.3 for

the underlying event model. We note that these were tuned to a variety of experimental

data using the MRST LO** PDF set [42] instead of the MSTW2008 NLO set [27] used

here for the hard process generated using aMC@NLO.7 In Fig. 10 we show the ET distribution

including the UE, with hadrons of a maximum pseudorapidity ⌘c = 5, compared against the

analytical result, which we have shown matches well the hadron-level ⌘c = 5 distribution

without UE (Fig. 9). In practice, particles cannot be detected at transverse momenta

down to zero, and therefore we show the e↵ect of applying transverse-momentum cuts on

the hadrons: pc
T = 1.0, 1.5, 2.0 GeV. When pc

T = 1.5 GeV the peak in ET is moved back

to approximately the value of the parton-level prediction, but the distribution itself is still

somewhat broader.

Figure 10: Hadron-level transverse-energy distribution in Higgs boson production at the LHC at 8

and 14 TeV, including the e↵ect of the underlying event. Red: resummed and matched to NLO, for

comparison. Reweighted aMC@NLO+Herwig++ events with hadron maximum pseudorapidity ⌘c = 5:

Black: pc
T = 0 GeV, Blue: pc

T = 1.0 GeV, Magenta: pc
T = 1.5 GeV, Cyan: pc

T = 2.0 GeV.

We have also investigated the impact of the underlying event using di↵erent PDFs

and di↵erent, reasonable, model parameters. We found that, with reasonably-tuned values

for the underlying event model parameters, the change of PDF sets does not induce any

significant changes to the distributions.

To conclude, one can reproduce the ET distribution with the e↵ect of the UE and

detector geometry e↵ects by reweighting the parton-level Monte Carlo events to match the

analytical prediction of the ET due to ISR and subsequently enabling the hadronization

and underlying event models of the generator. The description of the underlying event is

robust against changes of tune parameters as well as PDF sets. However, in the presence

of the underlying event the ET distribution is highly sensitive to the minimum hadron

transverse momentum, pc
T .

7MRST LO**, the default PDF set for LO processes in Herwig++, is called ‘MRSTMCal’, with set

number 20651 in the LHAPDF database [43].

– 18 –

Figure 4: Hadron-level transverse-energy distribution in Higgs boson production at the LHC at 8 and 14
TeV, including the effect of the underlying event. Red: resummed and matched to NLO, for comparison.
Reweighted aMC@NLO+Herwig++ events with hadron maximum pseudorapidity ηc = 5: Black: pc

T = 0
GeV, Blue: pc

T = 1.0 GeV, Magenta: pc
T = 1.5 GeV, Cyan: pc

T = 2.0 GeV.

a qualitative level, and provide a compelling reason to determine if the UEs are in fact due to mul-
tiple Glauber interactions. Clearly this makes a deeper understanding of the Glauber region an
imperative.

4. Glauber interactions and the BFKL equation

To see how SCETII gives the BFKL equation we need to determine the SCET operator that

7
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gives the leading part of the high-energy forward scattering process in Fig. 3(a). To see how such
an operator arises in SCET we start with QCD and match onto SCET degrees of freedom. We carry
out the matching depicted in Fig. 3 by expanding the QCD amplitude in the forward region

AQCD =− g2

~k2
⊥

ū(p′1)T
a
γ

µu(p1)ū(p′2)T
a
γµu(p2)≈−

n · n̄g2

~k2
⊥

ξ̄nT a /̄n
2

ξnξ̄n̄T a /n
2

ξn̄ , (4.1)

where ξn and ξn̄ are the high-energy limit of the QCD spinors for quarks moving in the nµ and n̄µ

direction respectively. This amplitude is reproduced by the SCET operator first derived in Ref. [47]

Onn̄
G =−2g2

~k2
⊥

ξ̄p′1,n
T a /̄n

2
ξp1,nξ̄p′2,n̄

T a /n
2

ξp2,n̄ , (4.2)

where ξp1,n and ξp2,n̄ are SCET quark fields. This operator is not gauge invariant under separate
gauge transformations in the n and n̄ sectors, but can be made so by adding the appropriate SCET
collinear Wilson lines [6]

Wn = ∑
perms

exp
(
− g

n̄ ·P n̄ ·Aq,n

)
and Wn̄ = ∑

perms
exp
(
− g

n ·P n ·Aq,n̄

)
. (4.3)

In addition, soft gluons with momentum that scales as kµ
s ∼
√

t can be radiated from the collinear
quarks. While such an interaction puts the collinear quark off-shell, it is order one in the power
counting and must be summed into a soft Wilson line [7]

Sn = ∑
perms

exp
( −g

n ·P n ·As,q

)
Sn̄ = ∑

perms
exp
( −g

n̄ ·P n̄ ·As,q

)
. (4.4)

Including both collinear and soft Wilson liens we arrive at the n-n̄ collinear Glauber operator

Onn̄
G =−8π αs(µ) ξ̄p′2,n̄

Wn̄Y †
n̄ T a /n

2
Yn̄W †

n̄ ξp2,n̄
1
~P2
⊥

ξ̄p′1,n
WnY †

n T a /̄n
2

YnW †
n ξp1,n . (4.5)

There are also collinear-soft Glauber operators which were considered in detail in Refs. [28, 29, 30],
however, they are not needed here.

Next, we renormalize the operator in Eq. (4.5). The diagrams that contribute are shown in
Fig. 5. The double lines in the diagrams in (a) indicate that a soft gluon is emitted from one of the
soft Wilson lines. The diagrams in (a) are ultraviolet (UV) finite, but contain a rapidity divergence.
The diagrams in (b) (plus a ghost-loop that is not shown) are UV divergent but do not have a
rapidity divergence and are not needed in obtaining the BFKL equation. Thus we focus on the
diagrams in Fig 5(a), which when summed give

A =−8παs(µ) ξ̄nT a /̄n
2

ξnξ̄n̄T a /n
2

ξn̄

[
iNcαs(µ)I (~k⊥)

]
, (4.6)

where

I (~k⊥) =
∫ dq−

q−

∫ d2q⊥
(2π)2

1
~q 2
⊥

1

(~q+~k)2
⊥
. (4.7)

In obtaining the expression in Eq. (4.6) a symmetry factor of one-half needs to be included as the
first two diagrams in Fig 5(a) are identical to the second two diagrams. The integral over q− results
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(a)

(b)

FIG. 3: One loop Feynman diagrams contributing to the renormalization of Onn̄
G . The double line

in the diagrams in (a) indicate soft gluon emission from a Wilson line. These diagrams have a

rapidity divergence which gives the gluon Regge trajectory. The diagrams in (b) have no rapidity

divergence, but have UV divergences. The first two diagrams involve soft gluons and soft quarks

(the soft-ghost loop diagram is not shown), and the UV divergence in these diagrams is cancelled

by a soft Lagrangian counter-term. The last diagram involves the exchange of a collinear gluon

(spring with a line) and the UV divergence is cancelled by a collinear Lagrangian counter-term.

integral above becomes

I(k⃗⊥) = ν2ηw(ν)2

∫
d4q

(2π)4

1

q−
1

q+

(q3)−2η

q2 − m2
g

1

(q⃗ + k⃗)2
⊥ + m2

g

(12)

= −i
ν2ηw(ν)2

η

Γ
(

1
2

− η
)
Γ(1 + η)

(4π)2
√

π

1

(k2
⊥)1+η

∫ 1

0

dx
xη

[x(1 − x) + m2
g/k

2
⊥]1+η

≈ −2i

(4π)2

w(ν)2

k⃗2
⊥

[
1

η
ln

(
k⃗2

⊥
m2

g

)
+ ln

(
k⃗2

⊥
4ν

)
ln

(
k⃗2

⊥
m2

g

)
− 1

4
ln2

(
k⃗2

⊥
m2

g

)
+ iπ ln

(
k⃗2

⊥
m2

g

)]
,

where w(ν) is a bookkeeping parameter that has been introduced for convenience in deriving
the rapidity RGE, and will eventually will be set to one [29, 30]. For completeness we also

6

Figure 5: One loop Feynman diagrams contributing to the renormalization of Onn̄
G . The double line in the

diagrams in (a) indicate soft gluon emission from a Wilson line. These diagrams have a rapidity divergence
which gives the gluon Regge trajectory. The diagrams in (b) have no rapidity divergence, but have UV
divergences. The first two diagrams involve soft gluons and soft quarks (the soft-ghost loop diagram is not
shown), and the UV divergence in these diagrams is cancelled by a soft Lagrangian counter-term. The last
diagram involves the exchange of a collinear gluon (spring with a line) and the UV divergence is cancelled
by a collinear Lagrangian counter-term.

in a rapidity divergence, while the integral over q⊥, which in the literature is called the gluon Regge
trajectory, contains IR divergences. To evaluate this integral we will need to introduce regulators
for both types of divergences. Here we will regulate the rapidity divergence using the methods
developed in Ref. [44, 43], and use a gluon mass (or dimensional regularization) to regulate IR
divergences. With these modifications the integral above becomes

I (~k⊥) = ν
2ηw(ν)2

∫ d4q
(2π)4

1
q−

1
q+

(q3)−2η

q2−m2
g

1

(~q+~k)2
⊥+m2

g

(4.8)

= −i
ν2ηw(ν)2

η

Γ
(1

2 −η
)
Γ(1+η)

(4π)2
√

π

1
(k2
⊥)

1+η

∫ 1

0
dx

xη

[x(1− x)+m2
g/k2
⊥]

1+η

≈ −2i
(4π)2

w(ν)2

~k2
⊥

[
1
η

ln
(~k2
⊥

m2
g

)
+ ln

(~k2
⊥

4ν

)
ln
(~k2
⊥

m2
g

)
− 1

4
ln2
(~k2
⊥

m2
g

)
+ iπ ln

(~k2
⊥

m2
g

)]
,
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where w(ν) is a bookkeeping parameter that has been introduced for convenience in deriving the
rapidity RGE, and will eventually will be set to one [44, 43]. The rapidity divergence corresponds
to the term that diverges as η→ 0. This rapidity pole must be subtracted by a rapidity counter-term.
However, as the rapidity divergent term contains IR divergences a sensible rapidity RGE can not be
derived. This issue is fixed if we consider forward scattering and include real emission diagrams.

The emission of a real soft gluon can occur from any of the soft Wilson lines as shown in
Fig. 6(a) or from the exchanged Glauber gluon as shown in Fig. 6(b). The amplitude for the sum

(a)

(b)

FIG. 4: Real emission of soft gluons from the n-n̄ Glauber interaction: (a) emission from the soft

Wilson lines, (b) emission from the Glauber gluon.

give an expression for I(k⃗⊥) regulating the IR divergences with dimensional regularization:

I(k⃗⊥) = −i(4πµ2)ϵν
2ηw(ν)2

η

Γ
(

1
2

− η
)
Γ(1 + η + ϵ)

(4π)2
√

π

1

(k2
⊥)1+η+ϵ

Γ(−ϵ)Γ(−η − ϵ)

Γ(−η − 2ϵ)
(13)

≈ −2i

(4π)2

w(ν)2

k⃗2
⊥

{
Γ(−ϵ)

η

(
µ̄2eγE

k⃗2
⊥

)ϵ
Γ(1 + ϵ)Γ(1 − ϵ)

Γ(1 − 2ϵ)
+

1

2ϵ2

+
1

2ϵ

[
ln

(
µ̄2

4ν2

)
+ ln

(
k⃗2

⊥
4ν2

)]
+

1

4
ln2

(
k⃗2

⊥
µ̄2

)
− ln

(
k⃗2

⊥
4ν2

)
ln

(
k⃗2

⊥
µ̄2

)
− π2

24

}
,

where µ̄2 = 4πµ2e−γ . The rapidity divergence corresponds to the term that diverges as
η → 0. This rapidity pole must be subtracted by a rapidity counter-term. However, as the
rapidity divergent term contains IR divergences a sensible rapidity RGE can not be derived.
This issue is fixed if we consider forward scattering and include real emission diagrams.

The emission of a real soft gluon can occur from any of the soft Wilson lines as shown
in Fig. 4(a) or from the exchanged Glauber gluon as shown in Fig. 4(b). The amplitude for
the sum of the four diagrams in Fig. 4(a) is

4∑

i=1

Ai
real = −2 g2 1

k⃗2
⊥

1

k⃗
′2
⊥

ξ̄nT
a /̄n

2
ξnξ̄n̄T

b /n

2
ξn̄(−igfabc)

(
nα

n · k′ k⃗
2
⊥ +

n̄α

n̄ · k
k⃗

′2
⊥

)
(14)

7

Figure 6: Real emission of soft gluons from the n-n̄ Glauber interaction: (a) emission from the soft Wilson
lines, (b) emission from the Glauber gluon.

of the four diagrams in Fig. 6(a) is

4

∑
i=1

A i
real =−2g2 1

~k2
⊥

1
~k′2⊥

ξ̄nT a /̄n
2

ξnξ̄n̄T b /n
2

ξn̄(−ig f abc)

(
nα

n · k′
~k2
⊥+

n̄α

n̄ · k
~k
′2
⊥

)
(4.9)

and the amplitude for the diagram in Fig. 6(b) is

A 5
real =−2g2 1

~k2
⊥

1
~k′2⊥

ξ̄nT a /̄n
2

ξnξ̄n̄T b /n
2

ξn̄(ig f abc)

(
kα

⊥+ k
′α
⊥ −

1
2

n̄αn · k′− 1
2

nα n̄ · k
)
, (4.10)
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where the soft gluon momentum is qµ = kµ−k
′µ ≈ 1

2 n̄ ·knµ− 1
2 n ·k′n̄µ +(k⊥−k′⊥)

µ . Adding these
up we arrive at the Lipatov vertex

A L = −2g2 1
~k2
⊥

1
~k′2⊥

ξ̄nT a /̄n
2

ξnξ̄n̄T b /n
2

ξn̄ (4.11)

×(ig f abc)

(
kα

⊥+ k
′α
⊥ −

1
2

n̄αn · k′− 1
2

nα n̄ · k− nα

n · k′
~k2
⊥−

n̄α

n̄ · k
~k
′2
⊥

)
.

This vertex is gauge invariant, as can be explicitly verified by contracting with the external gluon
momentum.

Now we have all the pieces needed to calculate the quark scattering cross section in the forward
region. Squaring the amplitude in Eq. (4.1) we obtain the tree level cross section

σ
LO =

2α2
s CF

Nc

∫ d2~k2
⊥

~k2
⊥

∫ d2~k
′2
⊥

~k′2⊥
δ
(2)(~k⊥−~k′⊥) . (4.12)

The NLO virtual corrections give

σ
NLO
V =

2α2
s CF

Nc

∫ d2~k⊥
~k2
⊥

∫ d2~k′⊥
~k′2⊥

δ
(2)(~k⊥−~k′⊥) (4.13)

×
(
− αsNc

2π2

)
ν

2ηw(ν)2 Γ(η)Γ
(1

2 −η
)

√
π

∫
d2q⊥

~k2
⊥

~q 2
⊥

1

[(~q⊥−~k⊥)2]1+η
.

The NLO real corrections can be obtained by the standard method of squaring the amplitude and
summing over final states, or by taking the cut of the forward scattering graph in the Glauber
regime. In order to incorporate the rapidity regulator we use the latter method to obtain

σ
NLO
R =

2α2
s CF

Nc

∫ d2~k⊥
~k2
⊥

∫ d2~k′⊥
~k′2⊥

(4.14)

×
(

αsNc

π2

)
ν

2ηw(ν)2 Γ(η)Γ
(1

2 −η
)

√
π

∫
d2q⊥

δ (2)(~q⊥−~k′⊥)
[(~q⊥−~k⊥)2]1+η

.

In order to ensure that there is no double counting in SCET the soft-Glauber overlap region needs
to be subtracted from the above results, however in this case the overlap region vanishes. Adding
these up we arrive at an expression for the forward scattering cross section accurate to NLO

σ =
2α2

s CF

Nc

∫ d2~k⊥
~k2
⊥

∫ d2~k⊥
~k′′2⊥

{
δ
(2)(~k⊥−~k′⊥)+

(
αsNc

π2

)
Γ(η)Γ

(1
2 −η

)
√

π
ν

2ηw(ν)2 (4.15)

×
∫ d2q⊥

[(~q⊥−~k⊥)2]1+η

[
δ
(2)(~q⊥−~k′⊥)−

~k2
⊥

2~q 2
⊥

δ
(2)(~k⊥−~k′⊥)

]}
.

Expanding around η = 0 we can isolate the rapidity divergent term

σ =
2α2

s CF

Nc

∫ d2~k⊥
~k2
⊥

∫ d2~k⊥
~k′′2⊥

{
δ
(2)(~k⊥−~k′⊥) (4.16)

+

(
αsNc

π2

)
w(ν)2

η

∫ d2q⊥
(~q⊥−~k⊥)2

[
δ
(2)(~q⊥−~k′⊥)−

~k2
⊥

2~q 2
⊥

δ
(2)(~k⊥−~k′⊥)

]
+ . . .

}
,
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where the dots represent NLO terms that are finite in the η → 0 limit. This result raises the im-
portant question of how the rapidity divergence is subtracted. In SCET without Glauber gluons
collinear and soft degrees of freedom factor and observables can often be expressed as convolu-
tions of matrix elements of operators involving only collinear or soft degrees of freedom. If the
factorization of soft and collinear holds in the presence of Glauber gluons then it may be that the
above cross section can also be expressed as a convolution of the matrix element of a soft oper-
ator with the matrix element of an n-collinear operator and the matrix element of an n̄-collinear
operator. In this case the counter-term for the soft operator would cancel the rapidity divergence.
Such a factorization is suggested by the standard treatment in the literature [35], where the two-
dimension Dirac delta function in transverse-momentum space is interpreted as the BFKL Green
function. The rapidity divergence is then canceled by a counter-term for this Green function. How-
ever, factorization of the Glauber interaction in SCET requires an all orders summation of soft
gluons, which has not yet been accomplished. A first step in this direction has recently been made
in Ref. [38] where it is shown that in a scalar theory with n-collinear modes, n̄-collinear modes,
and Glauber modes an all orders summation of ladder graphs gives the leading Regge behavior. We
will leave the summation of soft gluons for a future work, and motivated by the BFKL approach
will for the time being conjecture that the cross section factors. We renormalize the rapidity diver-
gence by identifying the two-dimension Dirac delta function in transverse-momentum space as the
leading order vacuum matrix element of a (currently unknown) operator, Osoft

G , involving soft fields:
G(~k⊥−~k′⊥)≡ 〈OG,soft〉. Then

G(~k⊥−~k′⊥,ν) =
∫

d2`⊥Z −1(~k⊥−~̀⊥;η ,ν)G(~̀⊥−~k′⊥;ν)(0) (4.17)

=
∫

d2`⊥Z −1(~k⊥−~̀⊥;η ,ν)δ (2)(~̀⊥−~k′⊥)

= δ
(2)(~k⊥−~k′⊥)+ counterterms ,

where the superscript (0) indicates the matrix element of the bare operator. Inverting the above
equation leads to

δ
(2)(~k⊥−~k′⊥) =

∫
d2`⊥Z (~k⊥−~̀⊥;η ,ν)G(~̀⊥−~k′⊥;ν) . (4.18)

The rapidity divergence term in Eq. (4.16) is cancelled by setting

Z (~k⊥−~̀⊥;η ,ν) = δ
(2)(~k⊥−~̀⊥)−

(
αsNc

π2

)
w(ν)2

η

[
1

(~k⊥−~̀⊥)2
(4.19)

−1
2

δ
(2)(~k⊥−~̀⊥)

∫ d2q⊥
(~q⊥−~k⊥)2

~k2
⊥

~q 2
⊥

]
.

Inserting this expression into Eq. (4.18) we find

δ
(2)(~k⊥−~k′⊥) = G(~k⊥−~k′⊥;ν)−

(
αsNc

π2

)
w(ν)2

η

[∫
d2q⊥

G(~q⊥−~k′⊥;ν)

(~q⊥−~k⊥)2
(4.20)

−1
2

G(~k⊥−~k′⊥;ν)
∫ d2q⊥

(~q⊥−~k⊥)2

~k2
⊥

~q 2
⊥

]
,

12
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which when used in Eq. (4.16) gives

σ =
2α2

s CF

Nc

∫ d2~k⊥
~k2
⊥

∫ d2~k
′
⊥

~k′2⊥
G(~k⊥−~k′⊥;ν)+ . . . (4.21)

where the singular terms in η cancel and the dots indicate NLO terms that do not vanish in the
η → 0 limit. The dependence of G(~k⊥−~k′⊥;ν) on ν is given by the rapidity RGE

d
d lnν

G(~k⊥−~k′⊥;ν) =
∫

d2`⊥γν(~k⊥−~̀⊥)G(~̀⊥−~k′⊥;ν) , (4.22)

where the rapidity anomalous dimension is determined from

γν(~k⊥−~k′⊥) =
∫

d2`⊥Z (~̀⊥,−~k′⊥;η ,ν)−1 d
d lnν

Z (~k⊥−~̀⊥;η ,ν) . (4.23)

Using
d

d lnν
=

∂

∂ lnν
−w(ν)2

η
∂

∂w2 (4.24)

we find the leading-log (LL) rapidity anomalous dimension

γν(~k⊥−~k′⊥) =
(

αsNc

π2

)[
1

(~k⊥−~k′⊥)2
− 1

2
δ
(2)(~k⊥−~k′⊥)

∫ d2q⊥
(~q⊥−~k⊥)2

~k2
⊥

~q 2
⊥

]
, (4.25)

where we set w(ν) = 1. Using this LL expression in Eq. (4.22) gives

d
d lnν

G(~k⊥−~k′⊥;ν) =

(
αsNc

π2

)∫ d2q⊥
(~q⊥−~k⊥)2

[
G(~q⊥−~k′⊥;ν)−

~k2
⊥

2~q 2
⊥

G(~k⊥−~k′⊥;ν)

]
. (4.26)

This is the BFKL equation [compare to Eq. (3.58) in Ref. [35]].

5. Conclusion

In this talk I have tried to give a compelling motivation for reexamining the contribution of the
Glauber region in factorization. In particular, I have shown that Glauber interactions in SCET are
responsible for the Regge behavior of the theory, and reproduce the BFKL evolution equation. This
is clearly only the beginning. There is much awaiting to be discovered including the connection of
mutli-Glauber exchange with saturation physics.
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