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1. Introduction

Transverse-spin asymmetries have become important m@msobe the novel nucleon struc-
ture, in particular the parton’s transverse motion [1, 24B, On the experiment sides+ p
[5, 6, 7, 8],p+ p[9, 10] ande™ e~ annihilation [11, 12] processes have been performed tg/stud
these asymmetries. On the theory side, two approaches kavedeveloped: the so-called trans-
verse momentum dependent (TMD) factorization [13, 14, b5]léw transverse momentum of
the observed hadron, and the twist-3 collinear factooratpproach [16, 17, 18] for high trans-
verse momentum. The relation between these two mechanssalled “matching”) has been
discussed for Drell-Yan production in [19] as well as for sémslusive deep inelastic scattering
(SIDIS) process in [20], both of which involve the quark-gtucorrelation function or the so-called
Qiu-Sterman function. In Sec. Il below we will discuss thetching for photon-gluon fusion chan-
nel of SIDIS at cross section level, which involves the thgkeon correlation function.

SIDIS is an efficient experimental tool to study the singémsverse-spin asymmetries (SSAS).
In this process, SSAs generated by Sivers function arerratteresting and extensively studied
experimentally by HERMES [7], COMPASS [8, 21, 22] and JLah [Sivers function is very
intriguing due to the theoretical prediction that it willaige sign in Drell-Yan with respect to
SIDIS process [23, 24, 25, 26]. A number of experiments idiclg COMPASS, RHIC, and Fer-
milab are planned to test this prediction experimentallynoWledge of evolution of the Sivers
function [27, 28, 29, 30, 31, 32] with hard scale is very intpot for accurate phenomenological
application and eventually for our better knowledge of éiesictions. To have the full knowledge
of TMD evolution of the Sivers function, one needs to knowgbecalled coefficient functions. In
Sec. lll, we derive a set of such coefficient functions whem expands the quark Sivers function in
terms of the three-gluon correlation functions. Finallgiec. IV we study the next-to-leading order
(NLO) perturbative QCD corrections to the transverse mdmarweighted spin-dependent cross
section. By analyzing the collinear divergence structwe,identify the off-diagonal evolution
kernel of the Qiu-Sterman function.

2. Matching between twist-3 collinear factorization and TMD formalism

We study the three-gluon correlation contribution to thee®& asymmetry in SIDIS process:
e(l) + p(p,s.) — e?)+h(pn) + X. With slightly different normalization from Ref. [33], the
three-gluon correlation function is defined as follows:
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where O%PY(xy,x2) and F9RY(xq,x,) correspond to symmetric and anti-symmetric combinations
of gluon field-strength tensors. The transverse spin degertifferential cross section of Sivers
effect, or the so-called sig, — @) module, could be written as
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where LKV = 2(¢H¢"Y + ¢V ¢'H) — Q2gHY is the leptonic tensor, whil&/X is the hadronic tensor,
including the partonic tensav*” and the usual fragmentation functi@q(z). The generic Fey-

man diagram to calculate the partonic hard-part functiosketched in Fig. 1. In the following

calculation, we only consider the so-called metric contitn [34], i.e., we contract our hadronic
tensor with gHV).

o [ 4
1P (g —x)p+ ki aop+ky

Figure 1: Generic diagram that is used to calculate the hard—partitnmblg‘g‘g_.

One can compute the contribution of the three-gluon cdicgldunction to the spin-dependent
Cross section up td'(dem0s), which has already been studied in [33] for heavy meson mtaziu
Here what we are interested is to study its matching to the Tatfborization formalism. Because
of different goals, we will simply derive the results flaght hadron production, i.e., neglect the
mass of the hadrons. We found that in the lpyy < Q limit, the spin-dependent cross section can
be written as

dAc
dxgdydz,d?pp

Qs

=— 27,00 (gaﬁsipﬁL) ﬁ %egz_#/d?zDh/q(z)é(l—i)
hL

PhL<Q

x ?(_;(Pqeg()’z) (%) [O(%,X) +O(x,0) + N(x,x) =N(x,0)],  (2.3)

wherePy_¢(R) = Tr [%*+ (1—X)?] is the usual gluon-to-quark splitting kernel, with = 1/2 the
color factor. On the other hand, the TMD factorization folisra [13, 14, 15] for SIDIS process
reads

dAo o o o )
AT B = k A k A —
dxgdydzd?pn . 0"%6’5/ A% 0P d"A1 0% (znk L +PL +AL —Pni)
9B kP
X~ fir'(%8, K4 )Dhjq(2n, P2 )S(ALH(QP), (2.4)

where flqu(xB,ki) is the quark Sivers functiorDy q(2, p?) is the TMD fragmentation function,
S(A.,) andH (Q?) denotes the soft and hard factors, respectively. To stuglgdhnection between
the TMD approach and the collinear twist-3 formalism, aggiin Egs. (2.4) and (2.3), we expand
the quark Sivers functioriz;'(xg,k? ) in terms of the three-gluon correlation functionskat>

Nacps
1 s 1 1d ~ (1
MfliTq(xB,ki) = —%@/XB X—;(Pqeg(x) (§> [O(X,X) + O(x,0) + N(x,x) — N(x,0)] . (2.5)
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For other factors, we ldt, to be of the order opy,; and the othersX(; andp, ) much smaller [35].
In this case, we negledt, andp, in the delta function:

Ki~pni:  0%(zKi+pi+AL—pni) — 82 (znk i —pni). (2.6)
At the same time using:
[Ash) =1 [ . Dyq(an P?) = Dijglzn). @7)

and H(Q?) = 1, finally we find that from Eq. (2.4) we arrive at the same resflEq. (2.3).
We thus demonstrates the matching between collinear 8Mattorization formalism and TMD
factorization formalism for three-gluon correlation ftions at moderate transverse momentum,

Nqcp < phr < Q.

3. Coefficient functions in TMD evolution formalism

We will now derive the coefficient functions associated with three-gluon correlation func-
tions, which are essential ingredients in the usual TMDwi@h formalism. Since TMD evolution
formalism is often derived in the Fourier transformed camwaitk b-space (conjugate tio, in mo-
mentum space), such coefficient functions usually rela@tlark Sivers function in the-space to
the corresponding collinear functions.

To start, we recall that the quark Sivers function in the tberdinateb-space is defined as
follows [28, 32]:

L9 (g 1) :$/d22£kj_eiki-bij_ £, k). (3.1)

Here the expression is giveniin= 4 — 2¢ dimensions, in which our calculations will be performed
to regularize the potential divergences as we will showwseltn other words, in the perturba-
tive region ¥b > Aqcp, one can expand the quark Sivers function as a product ofdbéi-c
cient functionsCq, i(%1,%2) and the corresponding collinear functiéf®) (x,xy), i.e., the twist-3
Qiu-Sterman functiorTyr (X1,%2) as well as the three-gluon correlation functioBéx;,x,) and

N (Xq,%2):

flLTQ(a)(XB,b) - (Iba ) Coei (R, %2) ® f( )(lexz)' (3-2)

where® represents the convolution over the momentum fractiongeakting order (LO), the result
is given by

Lq(a) AL
fir (Xe,b) = - ToF (X8, X8), (3.3)

where the quark Sivers function is for SIDIS process [32it i for Drell-Yan process, there will
be an extra sign on the right hand side of the equation [28lhé&next-to-leading order, we have

FL90@) (0 ) — ('f) { % ( %) / i—;‘qug(x) <%> [O(x,X) + O(%,0) + N(%X) — N(x,0)]

1dx

cqeg, (®)(0 (x,x)+N(x,x))+qug72(>2)(0(x,0)—N(X,O))}}, (3.4)
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where Y& = 1/¢ — e +In4m. It is obvious that the first term (the divergent term) is diyripe
O(as) correction to the Qiu-Sterman functidgr (x,X) [15, 36], and it should be recombined with
Eq. (3.3) to define the renormalized Qiu-Sterman functidme fiest finite terms correspond to the
desired coefficient functions, with the expressions giwen b

. Os R c?
Cag1(X) = 5 [Pag(R)In (b2u2> +X(1- X)}
) s N c? 1 o

wherec = 2e™%. We thus have derived the coefficient functid®g g of off-diagonal part: the
contribution of three-gluon correlation functions. Sudefficient functions will be exactlyhe
same even if one uses the new properly defined TMDs in [15] and/@r 8®], because there is no
contribution from soft factor subtraction at ord@tas) [15, 36] for the off-diagonal part.

4. Transverse momentum weighted spin-dependent cross skt

In this section we study the NLO transverse momentum-wedjriansverse spin-dependent
cross section, which is defined as [38]:

d(pnLA0) 5 ap dAo
dxgdydz, — /d Phi€ s"’pm dxgdydz,d2pp, |

The pn -weighted cross section contains collinear divergencegdalarize such a divergence, we
again present all the calculationsrin= 4 — 2¢ dimensions. We then perform the usaatxpansion
to isolate the divergent and finite contributions. Collegtihese terms, and performing integration
by parts to convert all the derivative term$(® (x1,x2) /dx to non-derivative term$® (x;,x,), we
end up with the following expression:

d{pn. A e )
di(zrgydgh _ %00 Zeé Dh/q 0(1-2) (—: +1In (SZ>>
x 2,-[/ i;(Pqeg()A() <;> [O(x,X) + O(x,0) + N(x,x) —=N(x,0)] +---,  (4.2)

where “--" represents the finite NLO corrections and are suppressed e details are given in
our paper [39]. Comparing Eq. (4.2) with the LO result giver{28]

d(pniAo) 200 dx dz ) )
dxgdydz, Zeé/__TqF (X,X)Dpyq(2)8(1-%)3(1-2), (4.3)

(4.1)

we notice that the divergent part is simply the NLO collin€a €D correction to the LO bare
Qiu-Sterman functioﬂ'q(f;) (xg,Xg). It should be absorbed into the definition of the renormdlize
Tor (X8, X8). After MS regularization we obtain the evolution equation for thia-Qterman func-
tion of the off-diagonal (three-gluon correlation funet)aontribution:

o Tue e 1) = 2 [ Ry of8) (3 ) [O0sx 1)+ 060,12
dlnu GF 78 B, Hf 27‘[ X2 q<g 2 , X, Kt , U, U

+N(x, X, uZ) — N(x,0, )] . (4.4)
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This result agrees with the earlier findings [40, 41, 42].eAftuch a subtraction, we finally obtain
the NLO corrections (finite parts) of the three-gluon catieh functions to thep;,, -weighted
transverse spin-dependent differential cross section.cbmplete result can be found in [39]. The
result follows the standard form in the usual collinear daization.

5. Summary

In this talk we report our recent work on the three-gluon elation function contribution to
the Sivers asymmetry in SIDIS [39]. At cross section leved,demonstrate the matching between
twist-3 collinear factorization formalism and TMD factmaition at moderate hadron transverse
momentumAqcp < phy < Q. We also derive th&(as) expansion of the quark Sivers function
in terms of the three-gluon correlation functions, the atbed off-diagonal piece. From it we derive
the coefficient functions used in the usual TMD evolutionmalism. We further calculate the NLO
perturbative QCD corrections to the transverse-momenuenghted spin-dependent differential
cross section, from which we identify the QCD collinear etin of the twist-3 Qiu-Sterman
function: the off-diagonal contribution from three-gluoarrelation functions.
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