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tion formalism at the moderate transverse momentum region.The so-called coefficient functions

when one expands the quark Sivers function in terms of three-gluon correlation functions are

derived, which are essential components in the usual transverse momentum dependent evolution
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1. Introduction

Transverse-spin asymmetries have become important tools to probe the novel nucleon struc-
ture, in particular the parton’s transverse motion [1, 2, 3,4]. On the experiment side,e + p
[5, 6, 7, 8], p+ p [9, 10] ande+e− annihilation [11, 12] processes have been performed to study
these asymmetries. On the theory side, two approaches have been developed: the so-called trans-
verse momentum dependent (TMD) factorization [13, 14, 15] for low transverse momentum of
the observed hadron, and the twist-3 collinear factorization approach [16, 17, 18] for high trans-
verse momentum. The relation between these two mechanisms (so-called “matching”) has been
discussed for Drell-Yan production in [19] as well as for semi-inclusive deep inelastic scattering
(SIDIS) process in [20], both of which involve the quark-gluon correlation function or the so-called
Qiu-Sterman function. In Sec. II below we will discuss the matching for photon-gluon fusion chan-
nel of SIDIS at cross section level, which involves the three-gluon correlation function.

SIDIS is an efficient experimental tool to study the single transverse-spin asymmetries (SSAs).
In this process, SSAs generated by Sivers function are rather interesting and extensively studied
experimentally by HERMES [7], COMPASS [8, 21, 22] and JLab [5]. Sivers function is very
intriguing due to the theoretical prediction that it will change sign in Drell-Yan with respect to
SIDIS process [23, 24, 25, 26]. A number of experiments including COMPASS, RHIC, and Fer-
milab are planned to test this prediction experimentally. Knowledge of evolution of the Sivers
function [27, 28, 29, 30, 31, 32] with hard scale is very important for accurate phenomenological
application and eventually for our better knowledge of these functions. To have the full knowledge
of TMD evolution of the Sivers function, one needs to know theso-called coefficient functions. In
Sec. III, we derive a set of such coefficient functions when one expands the quark Sivers function in
terms of the three-gluon correlation functions. Finally inSec. IV we study the next-to-leading order
(NLO) perturbative QCD corrections to the transverse momentum-weighted spin-dependent cross
section. By analyzing the collinear divergence structure,we identify the off-diagonal evolution
kernel of the Qiu-Sterman function.

2. Matching between twist-3 collinear factorization and TMD formalism

We study the three-gluon correlation contribution to the Sivers asymmetry in SIDIS process:
e(ℓ) + p(p,s⊥)→ e(ℓ′) + h(ph) + X . With slightly different normalization from Ref. [33], the
three-gluon correlation function is defined as follows:

Mαβγ
F,abc(x1,x2) = gs

∫ dy−1 dy−2
2π

eix1p+y−1 ei(x2−x1)p+y−2
1

p+
〈PS|Fβ+

b (0)F γ+
c (y−1 )F

α+
a (y−2 )|PS〉

=
Nc

(N2
c −1)(N2

c −4)
dabcOαβγ(x1,x2)−

i
Nc(N2

c −1)
f abcNαβγ(x1,x2) , (2.1)

whereOαβγ(x1,x2) and Fαβγ(x1,x2) correspond to symmetric and anti-symmetric combinations
of gluon field-strength tensors. The transverse spin dependent differential cross section of Sivers
effect, or the so-called sin(φh−φs) module, could be written as

d∆σ
dxBdydzhd2ph⊥

=
α2

emy
32π3Q4zh

LµνWµν(p,q, ph), (2.2)
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whereLµν = 2(ℓµℓ′ν + ℓνℓ′µ)−Q2gµν is the leptonic tensor, whileW µν is the hadronic tensor,
including the partonic tensorwµν and the usual fragmentation functionDh/q(z). The generic Fey-
man diagram to calculate the partonic hard-part function issketched in Fig. 1. In the following
calculation, we only consider the so-called metric contribution [34], i.e., we contract our hadronic
tensor with (−gµν ).

ν

σ δ ρ

µ

H

x1p (x2 − x1)p+ k⊥ x2p+ k⊥

q q

Figure 1: Generic diagram that is used to calculate the hard-part function Habc
ρδσ .

One can compute the contribution of the three-gluon correlation function to the spin-dependent
cross section up toO(αemαs), which has already been studied in [33] for heavy meson production.
Here what we are interested is to study its matching to the TMDfactorization formalism. Because
of different goals, we will simply derive the results forlight hadron production, i.e., neglect the
mass of the hadrons. We found that in the lowph⊥≪Q limit, the spin-dependent cross section can
be written as

d∆σ
dxBdydzhd2ph⊥

∣

∣

∣

∣

ph⊥≪Q
=− zhσ0

(

εαβ sα
⊥pβ

h⊥

) 1
(

p2
h⊥

)2 ∑
q

e2
q

αs

2π2

∫

dz
z

Dh/q(z)δ (1− ẑ)

×
∫

dx
x2 Pq←g(x̂)

(

1
2

)

[O(x,x)+O(x,0)+N(x,x)−N(x,0)] , (2.3)

wherePq←g(x̂) = TR
[

x̂2+(1− x̂)2
]

is the usual gluon-to-quark splitting kernel, withTR = 1/2 the
color factor. On the other hand, the TMD factorization formalism [13, 14, 15] for SIDIS process
reads

d∆σ
dxBdydzhd2ph⊥

=σ0∑
q

e2
q

∫

d2k⊥d2p⊥d2λ⊥δ 2(zhk⊥+p⊥+λ⊥−ph⊥)

×
εαβ sα

⊥kβ
⊥

M
f⊥q
1T (xB,k

2
⊥)Dh/q(zh, p2

⊥)S(λ⊥)H(Q2), (2.4)

where f⊥q
1T (xB,k2

⊥) is the quark Sivers function,Dh/q(zh, p2
⊥) is the TMD fragmentation function,

S(λ⊥) andH(Q2) denotes the soft and hard factors, respectively. To study the connection between
the TMD approach and the collinear twist-3 formalism, as given in Eqs. (2.4) and (2.3), we expand
the quark Sivers functionf⊥q

1T (xB,k2
⊥) in terms of the three-gluon correlation functions atk⊥ ≫

ΛQCD,

1
M

f⊥q
1T (xB,k

2
⊥) =−

αs

2π2

1
(

k2
⊥

)2

∫ 1

xB

dx
x2 Pq←g(x̂)

(

1
2

)

[O(x,x)+O(x,0)+N(x,x)−N(x,0)] . (2.5)
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For other factors, we letk⊥ to be of the order ofph⊥ and the others (λ⊥ andp⊥) much smaller [35].
In this case, we neglectλ⊥ andp⊥ in the delta function:

k⊥ ∼ ph⊥ : δ 2(zhk⊥+p⊥+λ⊥−ph⊥)→ δ 2 (zhk⊥−ph⊥) . (2.6)

At the same time using:
∫

d2λ⊥S(λ⊥) = 1,
∫

d2p⊥Dh/q(zh, p2
⊥) = Dh/q(zh), (2.7)

and H(Q2) = 1, finally we find that from Eq. (2.4) we arrive at the same result of Eq. (2.3).
We thus demonstrates the matching between collinear twist-3 factorization formalism and TMD
factorization formalism for three-gluon correlation functions at moderate transverse momentum,
ΛQCD≪ ph⊥≪ Q.

3. Coefficient functions in TMD evolution formalism

We will now derive the coefficient functions associated withthe three-gluon correlation func-
tions, which are essential ingredients in the usual TMD evolution formalism. Since TMD evolution
formalism is often derived in the Fourier transformed coordinateb-space (conjugate tok⊥ in mo-
mentum space), such coefficient functions usually relate the quark Sivers function in theb-space to
the corresponding collinear functions.

To start, we recall that the quark Sivers function in the the coordinateb-space is defined as
follows [28, 32]:

f⊥q(α)
1T (xB,b) =

1
M

∫

d2−2εk⊥e−ik⊥·bkα
⊥ f⊥q

1T (xB,k
2
⊥). (3.1)

Here the expression is given inn = 4−2ε dimensions, in which our calculations will be performed
to regularize the potential divergences as we will show below. In other words, in the perturba-
tive region 1/b ≫ ΛQCD, one can expand the quark Sivers function as a product of the coeffi-
cient functionsCq←i(x̂1, x̂2) and the corresponding collinear functionf (3)(x1,x2), i.e., the twist-3
Qiu-Sterman functionTq,F(x1,x2) as well as the three-gluon correlation functionsO(x1,x2) and
N(x1,x2):

f⊥q(α)
1T (xB,b) =

(

ibα

2

)

Cq←i(x̂1, x̂2)⊗ f (3)i (x1,x2). (3.2)

where⊗ represents the convolution over the momentum fractions. Atleading order (LO), the result
is given by

f⊥q(α)
1T (xB,b) =

(

ibα

2

)

Tq,F(xB,xB), (3.3)

where the quark Sivers function is for SIDIS process [32]. Ifit is for Drell-Yan process, there will
be an extra sign on the right hand side of the equation [28]. Atthe next-to-leading order, we have

f⊥q(α)
1T (xB,b) =

(

ibα

2

)

{

αs

2π

(

−
1
ε̂

)

∫

dx
x2 Pq←g(x̂)

(

1
2

)

[O(x,x)+O(x,0)+N(x,x)−N(x,0)]

+

∫ 1

xB

dx
x2

[

Cq←g,1(x̂)
(

O(x,x)+N(x,x)
)

+Cq←g,2(x̂)
(

O(x,0)−N(x,0)
)

]

}

, (3.4)
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where 1/ε̂ = 1/ε − γE + ln4π. It is obvious that the first term (the divergent term) is simply the
O(αs) correction to the Qiu-Sterman functionTq,F(x,x) [15, 36], and it should be recombined with
Eq. (3.3) to define the renormalized Qiu-Sterman function. The rest finite terms correspond to the
desired coefficient functions, with the expressions given by

Cq←g,1(x̂) =
αs

4π

[

Pq←g(x̂) ln

(

c2

b2µ2

)

+ x̂(1− x̂)

]

,

Cq←g,2(x̂) =
αs

4π

[

Pq←g(x̂) ln

(

c2

b2µ2

)

−
1
2

(

1−6x̂+6x̂2)
]

, (3.5)

wherec = 2e−γE . We thus have derived the coefficient functionsCq←g of off-diagonal part: the
contribution of three-gluon correlation functions. Such coefficient functions will be exactlythe
same even if one uses the new properly defined TMDs in [15] and/or [37, 30], because there is no
contribution from soft factor subtraction at orderO(αs) [15, 36] for the off-diagonal part.

4. Transverse momentum weighted spin-dependent cross section

In this section we study the NLO transverse momentum-weighted transverse spin-dependent
cross section, which is defined as [38]:

d〈ph⊥∆σ〉
dxBdydzh

≡

∫

d2ph⊥εαβ sα
⊥pβ

h⊥
d∆σ

dxBdydzhd2ph⊥
. (4.1)

The ph⊥-weighted cross section contains collinear divergence, toregularize such a divergence, we
again present all the calculations inn = 4−2ε dimensions. We then perform the usualε-expansion
to isolate the divergent and finite contributions. Collecting these terms, and performing integration
by parts to convert all the derivative termsd f (3)(x1,x2)/dx to non-derivative termsf (3)(x1,x2), we
end up with the following expression:

d〈ph⊥∆σ〉
dxBdydzh

=−
zhσ0

2 ∑
q

e2
q

∫

dz
z

Dh/q(z)δ (1− ẑ)

(

−
1
ε̂
+ ln

(

Q2

µ2

))

×
αs

2π

∫

dx
x2 Pq←g(x̂)

(

1
2

)

[O(x,x)+O(x,0)+N(x,x)−N(x,0)]+ · · · , (4.2)

where “· · · ” represents the finite NLO corrections and are suppressed here. The details are given in
our paper [39]. Comparing Eq. (4.2) with the LO result given by [38]

d〈ph⊥∆σ〉
dxBdydzh

=−
zhσ0

2 ∑
q

e2
q

∫

dx
x

dz
z

Tq,F(x,x)Dh/q(z)δ (1− x̂)δ (1− ẑ), (4.3)

we notice that the divergent part is simply the NLO collinearQCD correction to the LO bare
Qiu-Sterman functionT (0)

q,F (xB,xB). It should be absorbed into the definition of the renormalized
Tq,F(xB,xB). After MS regularization we obtain the evolution equation for the Qiu-Sterman func-
tion of the off-diagonal (three-gluon correlation function) contribution:

∂
∂ ln µ2

f

Tq,F(xB,xB,µ2
f ) =

αs

2π

∫ 1

xB

dx
x2 Pq←g(x̂)

(

1
2

)

[

O(x,x,µ2
f )+O(x,0,µ2

f )

+N(x,x,µ2
f )−N(x,0,µ2

f )
]

. (4.4)
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This result agrees with the earlier findings [40, 41, 42]. After such a subtraction, we finally obtain
the NLO corrections (finite parts) of the three-gluon correlation functions to theph⊥-weighted
transverse spin-dependent differential cross section. The complete result can be found in [39]. The
result follows the standard form in the usual collinear factorization.

5. Summary

In this talk we report our recent work on the three-gluon correlation function contribution to
the Sivers asymmetry in SIDIS [39]. At cross section level, we demonstrate the matching between
twist-3 collinear factorization formalism and TMD factorization at moderate hadron transverse
momentum,ΛQCD≪ ph⊥≪ Q. We also derive theO(αs) expansion of the quark Sivers function
in terms of the three-gluon correlation functions, the so-called off-diagonal piece. From it we derive
the coefficient functions used in the usual TMD evolution formalism. We further calculate the NLO
perturbative QCD corrections to the transverse-momentum-weighted spin-dependent differential
cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman
function: the off-diagonal contribution from three-gluoncorrelation functions.
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